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CHAPTER 3

Generalized estimating equations
for longitudinal data analysis
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3.1 Introduction

In this chapter we discuss the generalized estimating equations (GEE) approach for ana-
lyzing longitudinal data. Over the past 20 years, the GEE approach has proven to be an
exceedingly useful method for the analysis of longitudinal data, especially when the response
variable is discrete (e.g., binary, ordinal, or a count). When the longitudinal response is dis-
crete, linear models (e.g., linear mixed-effects models) are not very appealing for relating
changes in the mean response to covariates for at least two main reasons. First, with a dis-
crete response there is intrinsic dependence of the variability on the mean. Second, the range
of the mean response (e.g., a proportion or rate for a response that is binary or a count,
respectively) is constrained. In the setting of regression modeling of a univariate response,
both of these aspects of the response can be conveniently accommodated within generalized
linear models via known variance and link functions.

However, a straightforward application of generalized linear models to longitudinal data
is not appropriate, due to the lack of independence among repeated measures obtained on
the same individual. There has been extensive statistical literature on extending generalized
linear models to the longitudinal data setting. One approach for accounting for the within-
subject association is via the introduction of random effects in generalized linear models.
This leads to a class of models known as generalized linear mixed models (GLMMs); see
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44 GENERALIZED ESTIMATING EQUATIONS

Chapter 4 for a very comprehensive and expository discussion of these models. Generalized
linear mixed models represent one way to extend generalized linear models to longitudinal
data; they extend in a natural way the conceptual approach represented by the linear mixed-
effects models for continuous responses (e.g., Laird and Ware, 1982; see also Chapter 1).
There is a second approach for extending generalized linear models to longitudinal data that
leads to a class of regression models that are known as marginal models. The term marginal
in this context is used to emphasize that the model for the mean response at each occasion
depends only on the covariates of interest, and does not incorporate dependence on random
effects or previous responses. This is in contrast to GLMMs, where the mean response is
modeled not only as a function of covariates but is conditional also on random effects. The
most salient feature of marginal models is a regression model, with appropriately specified
link function, relating the mean response at each occasion to the covariates. For estimation of
the regression model parameters, marginal models do not necessarily require distributional
assumptions for the vector of longitudinal responses. When full distributional assumptions
for the vector of responses are avoided, the marginal model is said to be semi-parametric,
and this leads to a method of estimation known as generalized estimating equations (Liang
and Zeger, 1986), the main focus of this chapter.

Thus, the GEE approach has its basis in one particular type of extension of generalized
linear models to longitudinal, or more generally, cluster-correlated data. Before outlining
the main features and properties of GEE methods in Section 3.2, it is useful to review some
of its predecessors and consider the reasons why this method has been so widely adopted
for longitudinal analyses.

Prior to the seminal companion papers on GEE by Liang and Zeger (1986) and Zeger and
Liang (1986), statistical methods for the analysis of discrete longitudinal data had lagged
somewhat behind the corresponding developments for continuous outcomes. The early foun-
dations for statistical methods for estimation of marginal models for repeated categorical
responses can be traced to a general approach developed by Grizzle, Starmer, and Koch
(1969); this approach soon became known as the GSK method. Although the GSK method
was developed originally as a very general method for the analysis of categorical data, Koch
and Reinfurt (1971) and Koch et al. (1977) recognized that the method could be applied to
the analysis of repeated measurements. The GSK method is founded on a weighted least-
squares (WLS) approach that makes few assumptions about the within-subject association
among the repeated categorical outcomes. Specifically, this WLS approach is based on a
multinomial sampling model for the joint distribution of the vector of categorical outcomes
and relies on the asymptotic normality of estimators of the corresponding multinomial prob-
abilities. Recall that if a categorical outcome, with C levels, is measured repeatedly at n
occasions, there are Cn possible response profiles; thus, the joint distribution of the vector of
longitudinal responses is multinomial with Cn response probabilities (Cn−1 non-redundant
probabilities because the multinomial probabilities are constrained to sum to 1). In general,
for a marginal model for the repeated categorical responses, the main interest is focused
on the n × (C − 1) correlated marginal probabilities or transformations of these marginal
probabilities (e.g., logit transformations). Moreover, these marginal probabilities can simply
be expressed as linear transformations of the underlying multinomial probabilities. In the
GSK method, the sample proportions (or means) at each occasion are obtained within each
covariate stratum and grouped together to form a sample mean vector of length n×(C−1);
the sample covariance matrix is also estimated. A marginal model is specified by relating
the sample means (or known functions of the sample means such as the empirical logits)
at each occasion to a linear function of stratum covariates. Appealing to the multivariate
central limit theorem, and the use of the so-called delta method, the observed sample means
(or functions of the sample means) have approximate normal distributions, given sufficient
sample sizes within each stratum. The WLS method, with the sample mean vectors as the
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outcome vectors and the inverse of the sample covariance matrices as the weight matrices,
is then used to estimate the marginal model regression parameters.

At the time of its introduction, the GSK method provided a method for estimating a very
general family of models for repeated categorical data, allowing non-linear link functions to
relate the marginal expectations of the longitudinal responses to covariates. For example,
the method allows the fitting of logistic regression models to repeated binary outcomes. At
the heart of the GSK method are the notions of stratification of subjects on the basis of
covariates and non-parametric estimation of the multinomial probabilities for the vector of
repeated categorical responses within each stratum. Because the multinomial probabilities
are estimated non-parametrically as the sample proportions within strata, asymptotically,
the GSK method is equivalent to maximum likelihood (ML) estimation.

However, the GSK method has a number of restrictions that limit its usefulness for the
analysis of longitudinal data. Because it relies on stratification, the method requires that all
covariates be categorical or the reduction of quantitative covariates to categorical variables.
Moreover, it also requires a relatively large number of subjects within each stratum to esti-
mate the Cn multinomial probabilities; note that with C = 4 response levels for an outcome
measured repeatedly at n = 6 occasions, there are 46−1 or 4095 non-redundant multinomial
probabilities. Implicitly, this means that the method can only be validly applied when (i)
the number of repeated measures, n, is relatively small, thereby ensuring that the number
of multinomial probabilities to be estimated does not grow exponentially; (ii) the number
of covariate strata is relatively small; and (iii) the number of individuals is relatively large,
ensuring a sufficient number of subjects within each stratum. Finally, the GSK method, as
originally developed, also requires that the longitudinal study design be balanced on time
in the sense that all subjects are measured at the same set of occasions; later refinements
to the GSK method can handle balanced longitudinal designs with incompleteness due to
missing observations.

As an alternative to GSK methods, full likelihood-based methods for estimating marginal
models for repeated categorical data can, in principle, accommodate many of these common
features of longitudinal studies (e.g., covariates that are both quantitative and categorical,
missing data, and so on). However, in practice, ML fitting of marginal models for discrete
longitudinal data has proven to be very challenging. Among the many challenges are: (i) it
can be conceptually difficult to model higher-order associations in a flexible and interpretable
manner that is consistent with the model for the marginal expectations; (ii) given a marginal
model for the vector of repeated outcomes, the multinomial probabilities cannot, in general,
be expressed in closed form as a function of the model parameters; and (iii) the number of
multinomial probabilities grows exponentially with the number of repeated measures. As a
result, ML estimation is feasible only for a relatively small number of repeated measures.
Thus, although the development of likelihood-based methods for marginal models has been
fertile ground for methodological research (e.g., Bahadur, 1961; McCullagh and Nelder, 1989;
Zhao and Prentice, 1990; Lipsitz, Laird, and Harrington, 1990; Liang, Zeger, and Qaqish,
1992; Becker and Balagtas, 1993; Fitzmaurice, Laird, and Rotnitzky, 1993; Molenberghs
and Lesaffre, 1994; Lang and Agresti, 1994; Glonek and McCullagh, 1995; Bergsma and
Rudas, 2002; and many others), to date, ML methods that have been developed have also
proven to be of only limited practical use.

Thus, by the end of the 1970s, the GSK method provided the first unified approach for
extending generalized linear models to repeated categorical data, based on an application
of non-iterative weighted least squares. The method was implemented in widely available
statistical software (e.g., proc catmod in SAS). However, the method lacked versatility
and could not accommodate many of the common features of longitudinal studies, namely
mixtures of quantitative and categorical, time-invariant and time-varying, covariates and
inherently unbalanced designs with both mistimed measurements and missing data. So, by
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the early 1980s, the time was ripe for new methods for the analysis of discrete longitudinal
data that could handle all of these aspects of longitudinal data in a relatively flexible
way.

Finally, we note that the WLS estimation at the heart of the GSK method is similar in
spirit to non-iterative empirical logistic regression for binomial data (see, for example, Cox
and Snell, 1989). Empirical logistic regression is also applicable only when individuals can
be grouped into strata based on their covariates; at the time of its introduction, this greatly
limited the usefulness of empirical logistic regression in practice. However, as computing
advanced, empirical logistic (WLS) regression for binomial data was soon replaced by ML
methods that were far more versatile. In a similar vein, the GSK method for discrete longi-
tudinal data was replaced not by ML methods, for all the reasons mentioned earlier, but by
the GEE approach developed by Liang and Zeger (1986). By and large, the GEE approach
has overcome most of the limitations of its predecessors and has fundamentally changed the
way empirical researchers can approach the analysis of discrete longitudinal data.

3.2 Generalized estimating equations (GEE) for longitudinal data

In this section we briefly review the main features of marginal models for longitudinal data
and discuss the key properties of the GEE approach. Because the GEE approach can be
considered a multivariate extension of quasi-likelihood estimation, we first discuss estimation
of the regression parameters in generalized linear models for a univariate outcome, before
considering estimation of the regression parameters in a marginal model for longitudinal
outcomes.

3.2.1 Notation

Before we begin our discussion of marginal models and the GEE approach, we introduce
some notation. We assume that N subjects are measured repeatedly over time. We let Yij

denote the response variable for the ith subject on the jth measurement occasion (i =
1, . . . , N ; j = 1, . . . , ni). The response variable can be continuous or discrete (e.g., binary,
ordinal, polytomous, or a count). The type of response variable (e.g., binary or count) will
have implications for model specification. In general, we do not assume that subjects have
the same number of repeated measures or that they are measured at a common set of
occasions. To accommodate such unbalanced longitudinal data (i.e., repeated measurements
that are not obtained at a common set of occasions), we assume that there are ni repeated
measurements of the response on the ith subject and that each Yij is observed at time tij . We
can group the responses into an ni×1 vector of responses denoted by Y i. Finally, associated
with each response, Yij , there is a p × 1 vector of covariates, Xij . We note that Xij may
include covariates whose values do not change throughout the duration of the study and
covariates whose values change over time. The former are referred to as time-stationary or
between-subject covariates (e.g., gender and fixed experimental treatments or interventions),
whereas the latter are referred to as time-varying or within-subject covariates (e.g., time
since baseline, current smoking status, and environmental exposures that can vary over
time). We can group the vectors of covariates into an ni × p matrix of covariates denoted
by Xi.

3.2.2 Defining features of marginal models

As mentioned in Section 3.1, the defining feature of marginal models is a regression model
relating the mean response at each occasion, via a suitable link function, to the covariates.
With a marginal model, the main focus is on making inferences about population means.

© 2009 by Taylor & Francis Group, LLC
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As a result, marginal models for longitudinal data separately model the mean response
and the within-subject association among the repeated responses. In a marginal model, the
goal is to make inferences about the former, whereas the latter is regarded as a nuisance
characteristic of the data that must be taken into account in order to make correct inferences
about changes in the population mean response over time.

A marginal model for longitudinal data has the following three-part specification:

1. The conditional expectation of each response, E (Yij |Xij) = μij , is assumed to depend
on the covariates through a known link function h−1(·), e.g., logit(μij) or log(μij),

h−1 (μij) = ηij = X ′
ijβ,

where β is a p× 1 vector of marginal regression parameters.
2. The conditional variance of each Yij , given Xij , is assumed to depend on the mean

according to
Var (Yij) = φ v (μij) ,

where v (μij) is a known “variance function” (i.e., a known function of the mean, μij)
and φ is a scale parameter that may be fixed and known or may need to be estimated.
Note that dependence of Var (Yij) on the covariates Xij is suppressed from notation.

3. The conditional within-subject association among the vector of repeated responses, given
the covariates, is assumed to be a function of an additional vector of association param-
eters, say α (and also depends upon the means, μij). For example, the components
of α might represent the pairwise correlations or log odds ratios among the repeated
responses.

This three-part specification of a marginal model makes the extension of generalized linear
models to longitudinal data more transparent. The first two parts of the marginal model
correspond to the standard generalized linear model, albeit with no explicit distributional
assumptions about the responses. It is the third component, the incorporation of the within-
subject association among the repeated responses from the same individual, that represents
the main extension of generalized linear models to longitudinal data.

It is also worth emphasizing that this three-part specification of a marginal model can,
in principle, be extended by making full distributional assumptions about the vector of
responses. To do so would require that all two- and higher-way associations be speci-
fied in the third component of the model. However, for reasons mentioned in Section 3.1,
ML fitting of marginal models for discrete longitudinal data has proven to be very chal-
lenging. Consequently, the third component of a marginal model is typically specified in
terms of the two-way or pairwise association among the repeated responses from the same
individual.

In summary, marginal models are a very natural way to extend generalized linear models
to longitudinal responses. Marginal models specify a generalized linear model for the longitu-
dinal responses at each occasion but also include a model for the within-subject association
among the responses. A crucial aspect of marginal models is that the mean response and
within-subject association are modeled separately. This separation of the modeling of the
mean response and the association among responses has important implications for inter-
pretation of the regression parameters in the model for the mean response. In particular, the
regression parameters, β, in the marginal model have so-called population-averaged inter-
pretations. That is, they describe how the mean response in the population is related to
the covariates. For example, regression parameters in a marginal model might have inter-
pretation in terms of contrasts of the changes in the mean responses in subpopulations
(e.g., different treatment, intervention, or exposure groups); see Chapter 7 for a detailed
discussion of various aspects of interpretation of marginal model parameters.

© 2009 by Taylor & Francis Group, LLC
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48 GENERALIZED ESTIMATING EQUATIONS

3.2.3 Quasi-likelihood and generalized estimating equations

As noted in Section 3.2.2, the three-part marginal model specification does not require
full distributional assumptions for the repeated responses, only a regression model for the
mean response. The avoidance of distributional assumptions can be advantageous because,
in general, there is no convenient specification of the joint multivariate distribution of Y i

for marginal models when the responses are discrete. When full distributional assumptions
are avoided, the model is referred to as being semi-parametric because there is a parametric
component β and a non-parametric component determined by the nuisance parameters for
the second- and higher-order moments. The avoidance of distributional assumptions for Y i

leads to a method of estimation known as generalized estimating equations. Thus, the GEE
approach can be thought of as providing a convenient alternative to ML estimation. The
GEE approach proposed by Liang and Zeger (1986) is a multivariate generalization of the
quasi-likelihood approach for generalized linear models introduced by Wedderburn (1974).
To better understand this connection to quasi-likelihood estimation, in the following we
briefly outline the quasi-likelihood approach for generalized linear models for a univariate
response before discussing its extension to multivariate responses.

In the following, we now assume N independent observations of a scalar response variable,
Yi. Associated with the response, Yi, there are p covariates, Xi1, . . . , Xip. We assume that
primary interest is in relating the mean of Yi, μi = E(Yi|Xi1, . . . , Xip), to the covariates. In
generalized linear models, the distribution of the response is assumed to belong to the expo-
nential family of distributions (e.g., normal, Bernoulli, binomial, and Poisson). As described
in the first part of the specification of the marginal model in Section 3.2.2, in generalized
linear models a transformation of the mean response, μi, is linearly related to the covariates
via an appropriate link function,

h−1(μi) = β0 + β1Xi1 + β2Xi2 + · · · + βpXip,

where the link function h−1(·) is a known function, such as log(μi). The assumption that Yi

has an exponential family distribution has implications for the variance of Yi. In particular,
a feature of exponential family distributions is that the variance of Yi can be expressed in
terms of a known function of the mean and a scale parameter,

Var (Yi) = φ v(μi),

where the scale parameter φ > 0. The variance function, v(μi), describes how the variance of
the response is functionally related to the mean of Yi; the variance function was previously
discussed in the second part of the specification of the marginal model in Section 3.2.2.

Next, we consider estimation of β. Assuming Yi follows an exponential family density,
with Var(Yi) = φ v(μi), the ML estimator of β is obtained as the solution to the likelihood
score equations,

N∑
i=1

(
∂μi

∂β

)′ 1
φ v(μi)

{Yi − μi(β)} = 0,

where ∂μi/∂β is the 1 × p vector of derivatives, ∂μi/∂βk, k = 1, . . . , p. Interestingly, the
likelihood equations for generalized linear models depend only on the mean and variance
of the response (and the link function). Consequently, Wedderburn (1974) suggested using
them as “estimating equations” for any choice of link or variance function, even when the
particular choice of variance function does not correspond to an exponential family distri-
bution. That is, Wedderburn (1974) proposed estimating β by solving the quasi-likelihood
equations,

N∑
i=1

(
∂μi

∂β

)′
V −1
i {Yi − μi(β)} = 0. (3.1)

© 2009 by Taylor & Francis Group, LLC
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Wedderburn (1974) showed that for any choice of weights, Vi, the quasi-likelihood estimator
of β, say β̂, is consistent and asymptotically normal. The choice of weights Vi = Var(Yi)
yields the estimator with smallest variance among all estimators in this class. Note that in
generalized linear models, it is assumed that Vi = Var(Yi) = φ v(μi), and this assumption is
sufficient to characterize the distribution within the exponential family. Thus, the optimal
estimating equations (or quasi-likelihood equations) coincide with the score equations for
the case where Yi is assumed to have an exponential family distribution.

In summary, Wedderburn (1974) proposed estimators of β that do not require distribu-
tional assumptions on the response. This allows more flexible models for variability, e.g.,
incorporating overdispersion. Moreover, quasi-likelihood estimation only requires correct
specification of the model for the mean to yield consistent and asymptotically normal esti-
mators of β. That is, a key property of quasi-likelihood estimators is that they are consistent
even when the variance of the response has been misspecified, that is, Vi �= Var(Yi). Specif-
ically, it can be shown that the asymptotic distribution of β̂, the estimator for β obtained
from (3.1) with a particular choice of Vi, satisfies

√
N(β̂ − β) → N(0, Cβ),

where
Cβ = lim

N→∞
I−1
0 I1I

−1
0 ,

I0 =
1
N

N∑
i=1

(
∂μi

∂β

)′
V −1
i

(
∂μi

∂β

)
,

and

I1 =
1
N

N∑
i=1

(
∂μi

∂β

)′
V −1
i Var(Yi) V −1

i

(
∂μi

∂β

)
.

Consistent estimators of the asymptotic covariance of the estimated regression parameters
can be obtained using the empirical estimator of Cβ first suggested by Cox (1961), and
later proposed by Huber (1967), White (1982), and Royall (1986). The empirical variance
estimator is obtained by evaluating ∂μi/∂β at β̂ and substituting (Yi − μ̂i)2 for Var(Yi);
this is widely known as the sandwich variance estimator. Moreover, it can be shown that
the same asymptotic distribution holds when Vi is estimated rather than known, with Vi

replaced by estimated weights, say V̂i.
Next, we consider the multivariate extension of this quasi-likelihood approach to the

setting of marginal models for longitudinal responses. In the following, Y i denotes an ni×1
vector of responses (similarly, μi denotes an ni × 1 vector of means) and Xi is an ni × p
matrix of covariates. The fundamental idea underlying the GEE approach is to extend the
quasi-likelihood equations (or estimating equations) to the multivariate setting by replacing
Yi and μi by their corresponding multivariate counterparts (Y i and μi) and using a matrix
of weights Vi. Thus, the estimating equations for β in a marginal model are given by

uβ(β) =
N∑
i=1

D′
i V

−1
i {Y i − μi(β)} =

N∑
i=1

(
∂μi
∂β

)′
V −1
i {Y i − μi(β)} = 0, (3.2)

where Di = ∂μi/∂β is now an ni × p matrix of derivatives whose kth row is ∂μi/∂βk. As
with the quasi-likelihood approach, the optimal choice of Vi is to take Vi = Cov(Y i), the
ni×ni covariance matrix for Y i. Note that the GEE given by (3.2) is simply the multivariate
analog of the quasi-likelihood equations given by (3.1). However, unlike the quasi-likelihood
equations given by (3.1), the weight matrix, Vi, depends not only on β but also on the
pairwise associations among the longitudinal responses.
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3.2.4 Estimation: Generalized estimating equations

As mentioned in the previous section, GEE can be regarded as a multivariate extension of
the quasi-likelihood estimating equations. Note that the scalar weight in (3.1) is replaced
by the weight matrix, Vi, in (3.2). In general, the assumed covariance among the responses
can be specified as

Vi = φA
1/2
i Ri(α)A1/2

i ,

where Ai = diag{v(μij)} is a diagonal matrix with diagonal elements v(μij), which are
specified entirely by the marginal means (i.e., by β), Ri(α) is an ni×ni correlation matrix,
and φ is a dispersion parameter. For the correlation matrix Ri(α), α represents a vector of
parameters associated with a specified model for Corr(Y i), with typical element

ρist = ρist(α) = Corr(Yis, Yit;α), s �= t.

In the GEE approach, Vi is usually referred to as a “working covariance,” where the term
“working” is used to emphasize that Vi is only an approximation to the true covariance,
say Σi = Cov(Y i). Sometimes, Ri(α) is referred to as a “working correlation” matrix;
however, this implicitly assumes that the marginal variance assumption, Var(Yij) = φ v(μij),
is correct. Since both Ri(α) and Var(Yij) can be incorrectly specified, we prefer the use of
the term “working covariance.” Note that if Ri(α) = I, the ni × ni identity matrix, then
the GEE reduces to the quasi-likelihood estimating equations for a generalized linear model
that assume the repeated measures are independent.

Liang and Zeger (1986), and also Prentice (1988), parameterized the within-subject cor-
relations directly as a linear function of α (typically ρist(α) = αst, although ρist(α) could,
in principle, be allowed to depend on covariates). When α is known, the only unknown
quantity in (3.2) is β and the solution to (3.2) is a consistent estimator of β. In the usual
case where Vi, and specifically α, is unknown, then we must parameterize and estimate
ρist(α) = Corr(Yis, Yit). Some common examples of models for the correlation include:
“exchangeable,” in which ρist = α for all s < t; first-order autoregressive (AR(1)),

ρist = α|t−s|,

where 0 < α < 1, and the correlation decreases as the time between measurements (|t− s|)
increases; and “unstructured,” in which ρist = αst. For estimation of α, let

Uist(β) =
(Yis − μis)(Yit − μit)
φ{v(μis)v(μit)}1/2

,

which has expected value ρist; the Uist can be grouped together to form the ni(ni−1)/2×1
vector U i(β) = (Ui12, Ui13, . . . , Uini−1ni

)′. Also, let ρi(α) = E(U i;α) = (ρi12, ρi13, . . . ,
ρini−1ni)

′. Then, a second set of (moment) estimating equations similar to (3.2) can be used
to estimate α, given by

uα(α) =
N∑
i=1

E′
iW

−1
i {U i(β) − ρi(α)} = 0, (3.3)

where Wi ≈ Cov(U i) and Ei = ∂ρi(α)/∂α. The working covariance matrix for U i is
typically specified as diag{Var(Uist)}. In their original paper on GEE, Liang and Zeger
(1986) let Wi be the (ni × ni − 1)/2 × (ni × ni − 1)/2 identity matrix, whereas Prentice
(1988) suggested letting Wi be a diagonal matrix with the approximate variances of Uist

along the diagonal.
For the special case where the outcome is binary, an alternative to the correlation as a

measure of association between pairs of binary responses is the odds ratio. The odds ratio
has many desirable properties (e.g., see Bishop, Fienberg, and Holland, 1975, Chapter 11)
and has a more straightforward interpretation. To estimate the odds ratio as a measure
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of association, a second set of estimating equations similar to (3.3) (Lipsitz, Laird, and
Harrington, 1991) can be used in combination with (3.2) for the marginal regression pa-
rameters. A more efficient second set of estimating equations to estimate the odds ratio
parameters, referred to as “alternating logistic regression,” was later proposed by Carey,
Zeger, and Diggle (1993), and is discussed in greater detail in the next section. We also note
that Qu et al. (1992) proposed using tetrachoric correlations as measures of association
between pairs of binary responses; the tetrachoric correlation is the correlation between
underlying latent normal variables that are assumed to have been dichotomized to form
the observed binary outcomes. Additional work extending the GEE approach to longitudi-
nal ordinal and polytomous data has been developed by, for example, Miller, Davis, and
Landis (1993), Lipsitz, Kim, and Zhao (1994), Kenward, Lesaffre, and Molenberghs (1994),
Gange et al. (1995), Lumley (1996), and Heagerty and Zeger (1996). The main challenge
with extending the GEE approach to ordinal and polytomous responses has been that the
working covariance for ordinal and polytomous responses (other than “working indepen-
dence”), in general, requires the specification and estimation of a large number of nuisance
parameters.

Given any parameterization of the working covariance, Vi, in (3.2), and using Taylor
series expansions similar to Prentice (1988), assuming that the regression model for the
mean of Y i has been correctly specified, β̂ is consistent for β, and also

√
N(β̂ − β) has an

asymptotic distribution which is multivariate normal with mean vector 0 and covariance
matrix given by

Cβ = lim
N→∞

N

(
N∑
i=1

D′
iV

−1
i Di

)−1{ N∑
i=1

D′
iV

−1
i Cov(Y i)V −1

i Di

}(
N∑
i=1

D′
iV

−1
i Di

)−1

,

(3.4)
and if Cov(Y i) is correctly specified, so that Vi = Cov(Y i), then (3.4) reduces to

lim
N→∞

N

(
N∑
i=1

D′
iV

−1
i Di

)−1

. (3.5)

Note that a key property of the GEE estimators of β is that they are consistent and
asymptotically normal, for any choice of working covariance Vi, provided the regression
model for the mean response has been correctly specified. Heuristically, using results from
the method of moments, β̂ is consistent for β regardless of whether Vi is the true covariance
matrix of Y i because

E{uβ(β)} = E

[
N∑
i=1

D′
iV

−1
i {Y i − μi(β)}

]
=

N∑
i=1

D′
iV

−1
i E{Y i − μi(β)} = 0, (3.6)

and we are solving uβ(β̂) = 0 for β̂. In particular, for any positive definite and symmetric
matrix Vi, the solution to (3.2) is a consistent estimator of β. This is the key property of
the GEE method and implies that Vi does not have to be correctly specified in order to
obtain consistent estimators of β.

Finally, Cβ in (3.4) can be consistently estimated by Ĉβ , which is obtained by replac-
ing β and α by their estimates, and also Cov(Y i) by (Y i − μ̂i)(Y i − μ̂i)′. The estimator
Ĉβ is a sandwich variance estimator and has the same form as the sandwich variance es-
timator in our earlier discussion of quasi-likelihood estimation. Some authors refer to this
sandwich variance estimator as the “robust” variance estimator because it is consistent for
the asymptotic variance of β̂ provided E{uβ(β̂)} = 0; that is, the sandwich variance esti-
mator can be said to be robust to misspecification of the covariance among the repeated
measures.
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Obtaining GEE estimates requires an iterative algorithm. The structure of the GEE
suggests the use of a specific iterative scheme, namely to iterate between estimating β
(given the current estimate of α) as the solution to (3.2), and estimating α (given the
current estimate of β) as the solution to (3.3) until convergence. In particular, the solution
(β̂, α̂) to (3.2) and (3.3) can be obtained by a Fisher scoring algorithm. Given a starting
value for β, say under the naive assumption of independence, the solution (β̂, α̂) can be
obtained by iterating between

β̂
(m+1)

= β̂
(m)

+

[
N∑
i=1

D
(m)
i

′{
V

(m)
i

}−1
D

(m)
i

]−1 N∑
i=1

D
(m)
i

′{
V

(m)
i

}−1{Y i − μi(β̂
(m)

)},

(3.7)
and

α̂(m+1) = α̂(m) +

[
N∑
i=1

E
(m)
i

′{
W

(m)
i

}−1
E

(m)
i

]−1

×
N∑
i=1

E
(m)
i

′{
W

(m)
i

}−1[
U i

{
β̂

(m)}− ρi

{
α̂(m)}],

until β̂
(m+1)

= β̂
(m)

and α̂(m+1) = α̂(m), where D(m)
i = Di{β̂

(m)}, V (m)
i = Vi{β̂

(m)
, α̂(m)},

E
(m)
i = Ei{β̂

(m)
, α̂(m)}, and W

(m)
i = Wi{β̂

(m)
, α̂(m)}.

We note that, given the current estimate of β, the estimator of α proposed by Liang and
Zeger (1986) is non-iterative. For example, suppose an “exchangeable” correlation pattern is
assumed, in which ρist = α for all s < t. Then, Liang and Zeger (1986) proposed estimating
α, given the current estimate of β, say β̂, by

α̂ =
1
N∗

N∑
i=1

ni∑
s<t

(Yis − μ̂is)(Yit − μ̂it)

φ̂{v(μ̂is)v(μ̂it)}1/2
, where N∗ =

N∑
i=1

ni(ni − 1)
2

;

alternatively, various degree-of-freedom corrections to account for the estimation of β have
been suggested for the denominator N∗, e.g., N∗ − p.

3.2.5 Properties of GEE estimators

In this section we consider properties of the GEE estimators. Before summarizing the key
properties of the GEE approach, we note that there is an implicit assumption in the first
component of a marginal model that is often overlooked. Recall that in a marginal model
the conditional expectation of each response is assumed to depend on the covariates through
a known link function

h−1 (μij) = ηij = X ′
ijβ.

In marginal models, the primary interest lies in estimation of the regression parameters,
β, in the model for E(Yij |Xij). The key property for (asymptotically) unbiased estimators
using GEE is given in (3.6), and can be rewritten as

E
[
D′

iV
−1
i {Y i − μi(β)}

]
= Exi

[
D′

iV
−1
i Eyi|xi

{Y i − μi(β)}
]

= 0, (3.8)

where Exi(·) denotes expectation with respect to the marginal distribution of Xi and
Eyi|xi

(·) denotes expectation with respect to the conditional distribution of Y i given Xi.
Note that the jth element of the vector μi(β) is μij = E(Yij |Xij), but the elements of
Eyi|xi

(Y i) in (3.8) are E(Yij |Xi1, . . . ,Xini
). Thus, for (3.8) to hold, the conditional mean

of the jth response, given Xi1, . . . ,Xini
, must depend only on Xij , that is,

E(Yij |Xi) = E(Yij |Xi1, . . . ,Xini) = E(Yij |Xij); (3.9)
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see Fitzmaurice, Laird, and Rotnitzky (1993) and Pepe and Anderson (1994) for a more
detailed discussion of this sufficient condition. With time-stationary covariates, this assump-
tion poses no difficulties; it necessarily holds because Xij = Xik for all occasions k �= j.
Also, with time-varying covariates that are fixed by design of the study (e.g., time since
baseline, treatment group indicator in a crossover trial), the assumption also holds because
values of the covariates at any occasion are determined a priori by study design and in a
manner completely unrelated to the longitudinal response. However, when a time-varying
covariate varies randomly over time the assumption made in (3.9) may not hold. For exam-
ple, the assumption will be violated when the current value of the response, say Yij , given
the current covariates Xij , predicts the subsequent value of Xi,j+1; see Chapter 23 for a
more detailed discussion of stochastic time-varying covariates in longitudinal studies. When
(3.9) is not satisfied, yet there is subject-matter interest in the dependence of Yij on Xij ,
Pepe and Anderson (1994) recommend using GEE with a “working independence” assump-
tion. Under a “working independence” assumption, the weight matrix is diagonal and the
corresponding estimating equations simplify and are unbiased regardless of whether or not
(3.9) is satisfied. In contrast, under alternative choices for the working covariance matrix,
the estimating equations are not necessarily unbiased and may yield inconsistent estimators
of the regression parameters.

Thus far, we have seen that the GEE approach provides a convenient alternative to ML
estimation of the regression parameters in marginal models for longitudinal data, while also
retaining a number of appealing properties. First, in many longitudinal designs the GEE
estimator β̂ is almost as efficient as the ML estimator. For example, consider the case of
linear models for continuous responses that are assumed to have a multivariate normal
distribution. It can easily be shown that the generalized least-squares estimator of β in
linear models can be considered a special case of the GEE approach. The GEE also has an
expression similar to the likelihood equations for β in certain “mixed parameter” models
for discrete longitudinal data (e.g., Fitzmaurice and Laird, 1993; Fitzmaurice, Laird, and
Rotnitzky, 1993). As a result, for many longitudinal designs, there is little loss of efficiency
when the GEE approach is adopted as an alternative to maximum likelihood. Moreover,
because all GEE estimators of β are consistent and asymptotically normal, it is of inter-
est to consider their efficiency under various working covariance assumptions. Indeed, it
has been suggested in the literature that setting Ri = I, the identity matrix, leads to an
estimator with nearly the same efficiency as the optimally weighted GEE (with Vi = Σi).
Interestingly, for a balanced longitudinal design, with no missing data, there are cases where
this claim has some justification. Specifically, there is relatively little loss of efficiency ei-
ther for between-subject effects (where the covariate design Xijk = Xij′k for all occasions
j �= j′) or for within-subject effects when the covariate design on time for the latter effects
is the same for all subjects (i.e., Xijk �= Xij′k for some occasions j �= j′, but Xijk = Xi′jk

for all subjects i �= i′). However, for the case of a within-subject effect when the covari-
ate design on time is not the same for all subjects (i.e., Xijk �= Xij′k for some occasions
j �= j′ and Xijk �= Xi′jk for some subjects i �= i′), there can be a very discernible loss of
efficiency under the non-optimal “working independence” assumption for the covariance,
especially when the true correlations are moderately large (see, for example, Lipsitz et al.,
1994). Heuristically, this result can be explained as follows. When using GEE methods, the
estimated βs in a marginal model can be thought of as weighted averages of between- and
within-subject contrasts. In the case of a between-subject effect (e.g., exposure or treat-
ment group) or a within-subject effect when the covariate design on time is the same for
all subjects (e.g., time since baseline), the respective between- or within-subject contrasts
are weighted approximately equally, regardless of the assumed (or working) covariance.
On the other hand, for a within-subject effect when the covariate design on time is not
the same for all subjects, the GEE estimate is a weighted average of both between-subject
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and within-subject contrasts that are weighted differently. Moreover, the weights for these
different contrasts depend on the assumed covariance. So, for the latter case, the correla-
tion is more important and determines the optimal weights for combining the contrasts. In
addition, in the setting of unbalanced data, with ni �= n, each individual no longer con-
tributes equally weighted components to even the between-subject effects, and thus we can
expect a loss of efficiency for the GEE under “working independence” in that setting as
well. So, in general, it can be advantageous to choose a working covariance that closely
approximates the true covariance. The closer the working covariance matrix (Vi) approxi-
mates the true underlying covariance matrix (Σi), the greater the efficiency for estimation
of β.

A second appealing property of the GEE estimator β̂ is its robustness, yielding a con-
sistent estimator of β even if the within-subject associations among the repeated measures
have been misspecified. It only requires that the model for the mean response be correct.
This robustness property of GEE is important because the usual focus of a longitudinal
study is on changes in the mean response. In general, there is usually far less interest in,
and correspondingly less subject-matter knowledge of, the patterns of covariance among the
repeated measures. Although the GEE approach yields a consistent estimator of β under
misspecification of the within-subject associations, the usual standard errors obtained un-
der the misspecified model for the within-subject association are not valid. Fortunately, in
many cases, valid standard errors for β̂ can be obtained using the so-called sandwich vari-
ance estimator. A remarkable property of the sandwich estimator is that it is also robust in
the sense that it provides valid standard errors when the assumed model for the covariances
among the repeated measures is not correct. That is, with large sample sizes, the sand-
wich variance estimator yields correct standard errors. However, it is worth emphasizing
that this robustness property of the sandwich variance estimator is an asymptotic property.
In general, use of the sandwich variance estimator is best suited to balanced longitudinal
designs where the number of subjects (N) is relatively large and the number of repeated
measures (n) is relatively small. Moreover, the sandwich estimator is less appealing when
the design is severely unbalanced and/or when there are few replications to estimate the
true underlying covariance matrix. The use of the sandwich estimator implicitly relies on
there being many replications of the vector of responses associated with each distinct set of
covariate values.

Note that bias-corrected versions of the sandwich variance estimator have been proposed
that have somewhat better finite-sample properties, including the jackknife (Paik, 1988;
Mancl and DeRouen, 2001). Most of these bias-corrected versions involve a “degrees-of-
freedom” correction. In cases where there are few, if any, replications of Y i associated with
each distinct set of covariate values, the use of the sandwich estimator can be problematic.
In particular, standard errors based on the sandwich estimator tend to be biased downward.
In addition, the sampling variability of the sandwich estimator of Cov(β̂) can be very large,
resulting in an unstable estimator of variability. In these settings, it may be preferable to
carefully model the covariances among the responses and use the “model-based” estimator
of Cov(β̂) given by (3.5) and evaluated at (β̂, α̂). This estimator of Cov(β̂) is referred to as a
“model-based” estimator to remind us that it yields valid standard errors provided that the
working covariance matrix, Vi, is a close approximation to the true underlying covariance
matrix, Σi. In general, unlike the sandwich variance estimator, the “model-based” estimator
does not require such a large number of replications; the sampling variability of the “model-
based” estimator tends to be smaller than that of the sandwich variance estimator. The key
to obtaining approximately unbiased variance estimators using the “model-based” estimator
is to choose a model for the working covariance matrix that is close to the true covariance
matrix.
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Finally, for making inferences about β, since the GEE approach is not likelihood-based,
likelihood ratio tests are not available for hypotheses testing; in addition, this also has
ramifications for inferences when there are missing data, a topic that will be discussed in
Section 3.4. Instead, inferences typically rely on Wald test statistics based on quadratic
forms. For example, if it is of interest to test whether or not the �th element of β is 0,
H0 : β� = 0, then the Wald test statistic,

Z� =
β̂�√

V̂ar(β̂�)
∼ N(0, 1)

can be constructed, where V̂ar(β̂�) is the �th diagonal element of either the model-based or,
more typically, the sandwich variance estimate. More generally, for a null hypothesis of the
form H0 : Lβ = 0, versus the alternative HA : Lβ �= 0, for an r × p matrix L of full rank,
r ≤ p, the Wald test statistic is

X2 = (Lβ̂)′{LĈov(β̂)L′}−1Lβ̂ ∼ χ2
r,

where χ2
r denotes a chi-square distribution with r degrees of freedom.

Although this use of the Wald statistic allows for the comparison of nested models, it
can be potentially problematic because Wald statistics are known to have less than optimal
properties under the alternative in logistic regression models for univariate outcome data
(Hauck and Donner, 1977). We conjecture that the same may be true for Wald statistics
based on GEE estimates of marginal regression parameters for longitudinal binary data.
As an alternative, and to circumvent this potential problem with the Wald statistic, one
can base inferences on the score test statistic proposed by Rotnitzky and Jewell (1990) and
Boos (1992). Recall the property of the GEE score vector uβ(β) given in (3.6), namely
E{uβ(β)} = 0. Furthermore, it can be shown that

Vu(β) = Cov{uβ(β)} = {Cov(β̂)}−1.

Finally, since the score vector is a sum of independent random variables, using the central
limit theorem, it can be shown that

uβ(β) ∼ N{0, Vu(β)}.
Then, the “score” test statistic can be expressed as a quadratic form in the score vector,

uβ(β̃)′{Vu(β̃)}−1uβ(β̃) ∼ χ2
r, (3.10)

where uβ(β̃) and Vu(β̃) are the score vector and its variance under the alternative hypoth-
esis, evaluated at β̃, which is the estimate of β under the null hypothesis H0 : Lβ = 0.

3.3 Some extensions of GEE methods for longitudinal data

In this section we briefly review some extensions of the standard GEE methods proposed
by Liang and Zeger (1986). In particular, we describe alternative estimators of the within-
subject association, especially when the longitudinal responses are discrete. We also discuss
joint estimation of the marginal mean and within-subject association parameters.

3.3.1 Alternative estimators of within-subject association parameters

As discussed in the previous section, when Vi is correctly specified in the standard GEE
approach, the resulting estimator of β is semi-parametric efficient in the sense of having the
smallest variance among all estimators in the class given by (3.2). However, the estimators of
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the correlation parameters α proposed by Liang and Zeger (1986) are not efficient, in large
part due to the use of a suboptimal weight matrix, Wi, in (3.3). This has led researchers to
develop alternative estimating equations for α. Using the same set of estimating equations
for β given in (3.2), we now consider two alternative estimating equations for α (and thus
for Vi(β,α)). We note that any set of estimating equations that use (3.2) to estimate β are
often referred to as first-order GEE or “GEE1”. Here, we consider two alternative GEE1s
developed with the goal of providing more stable and/or efficient estimates of α than the
standard GEE of Liang and Zeger (1986).

One set of estimating equations for α that has generated some interest in the statistical
literature is that based on the notion of “Gaussian” estimation (see, for example, Lipsitz,
Laird, and Harrington, 1992; Lee, Laird, and Johnston, 1999; Hall and Severini, 1998; Lipsitz
et al., 2000; Fitzmaurice, Lipsitz, and Molenberghs, 2001; Wang and Carey, 2003). The key
idea here is to base estimation of α on the multivariate normal estimating equations for the
correlations. In particular, let

ξi = ξi(β) =
1√
φ
A

−1/2
i (Y i − μi),

be the vector of standardized residuals, where Ai is a diagonal matrix with diagonal elements
v(μij). Note that Cov(ξi) is the correlation matrix of Y i, which we denoted earlier as
Ri = Ri(α). Then, a second set of (moment) estimating equations can be obtained as
the score equations for α under the assumption that ξi ∼ N(0, Ri(α)). Specifically, the
estimating equations for α are given by

uα(α) =

[
∂

∂α

{
N∑
i=1

log|Ri(α)| −
N∑
i=1

ξ′i(β)R−1
i (α)ξi(β)

}]
= 0. (3.11)

The rth component of uα(α) in (3.11) equals
N∑
i=1

tr
[
R−1

i (α){ξi(β)ξ′i(β) −Ri(α)}R−1
i (α)Ṙir(α)

]
,

where Ṙir(α) = ∂Ri(α)/∂αr and tr{·} denotes the trace of a matrix. An appealing feature of
the use of the multivariate normal estimating equations is that it ensures that the estimated
correlation matrix, Ri(α̂), is non-negative definite when there are unbalanced data (i.e.,
ni �= n). In contrast, this is not the case for alternative GEE1 methods. Thus, in general,
this leads to more stable estimation of α. As a slight modification to these multivariate
normal estimating equations, Wang and Carey (2004) proposed estimating the correlation
parameters by differentiating the Cholesky decomposition of the working correlation matrix;
a similar approach was also used by Ye and Pan (2006). Furthermore, similar Gaussian or
“quadratic” estimating equations have been proposed by Crowder (1995) and Qu, Lindsay,
and Li (2000).

Motivated by the application of GEE methods to longitudinal binary outcomes, a second
alternative set of estimating equations for α were proposed by Carey, Zeger, and Diggle
(1993) and Lipsitz and Fitzmaurice (1996). Specifically, they proposed a set of estimating
equations based on the conditional residuals {Yit − E(Yit|Yis = yis, Xi)}, that is, deviations
about conditional expectations. In contrast, note that the second set of estimating equations
given by (3.3) are based on the unconditional residuals

(Yis − μis)(Yit − μit)
φ{v(μis)v(μit)}1/2

− ρist.

The conditional expectations can be grouped together to form the ni(ni − 1)/2 × 1 vector
of conditional residuals, (U i − ηi), where

U i = {Ui12,Ui13, . . . ,Ui,n−1,n}′, ηi = {ηi12, ηi13, . . . , ηi,n−1,n}′,
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with Uist = Yit and ηist = E(Yit|Yis = yis, Xi), for s < t. Note that for the special case
where the Yit are binary, the conditional mean equals

ηist(β,α) =E(Yit|Yis = yis,β,α)

= yisE(Yit|Yis = 1,β,α) + (1 − yis)E(Yit|Yis = 0,β,α)

= yis Pr(Yit = 1|Yis = 1,β,α) + (1 − yis) Pr(Yit = 1|Yis = 0,β,α)

= yis {Pr(Yis = 1, Yit = 1;β,α)/Pr(Yis = 1;β)}

+(1 − yis) {Pr(Yis = 0, Yit = 1;β,α)/Pr(Yis = 0;β)}

= yis (πist/μis) + (1 − yis) {(μit − πist)/(1 − μis)} ,

(3.12)

where πist = Pr(Yis = 1, Yit = 1;β,α). Then, a set of estimating equations for α is given by

uα(α) =
N∑
i=1

E′
iW

−1
i {U i − ηi(β,α)} = 0, (3.13)

where Ei = ∂ηi/∂α and Wi = diag{Var(Yit|Yis = yis)}. Note that for binary Yit,
Var(Yit|Yis = yis) = ηist(1 − ηist) since E(Y 2

it |Yis = yis) = E(Yit|Yis = yis) = ηist.
Although the conditional residuals (Uist − ηist) are neither independent nor uncorre-

lated, Carey, Zeger, and Diggle (1993) argue that the correlations among the conditional
residuals should be substantially smaller than the correlations among the unconditional
residuals. Consequently, setting Wi = diag{ηist(1 − ηist)} in (3.13) should provide a closer
approximation to the optimal weight matrix. Kuk (2004) proposed a symmetrized version of
these estimating equations that may be particularly useful for an exchangeable correlation
structure.

We note that after some algebra, (3.12) can be shown to equal

E(Yit|Yis = yis,β,α) = μit + (yis − μis)ρist

√
Var(Yit)
Var(Yis)

, (3.14)

which is exactly the conditional expectation if (Yis, Yit) are assumed to be bivariate nor-
mal. Thus, even though these estimating equations were originally proposed for analysis of
longitudinal binary data, the form of the conditional expectation in (3.14) suggests that
they can be used also for non-binary longitudinal outcomes. The only additional issue that
arises for non-binary outcomes is the specification of Var(Yit|Yis = yis). For binary outcome
data, it is straightforward to specify this variance as Var(Yit|Yis = yis) = ηist(1− ηist). For
non-binary outcomes, one alternative is to use the conditional variance from the bivariate
normal, with

Var(Yit|Yis = yis,β,α) = Var(Yit)
(
1 − ρ2

ist

)
.

As with the standard GEE1 discussed in Section 3.2.3, the two alternative approaches
discussed in this section require an iterative algorithm. That is, both of these GEE1 methods
require iterating between estimating β (given the current estimate of α) as the solution to
(3.2), and estimating α (given the current estimate of β) as the solution to (3.11) or (3.13),
until convergence.

3.3.2 Second-order generalized estimating equations (GEE2)

In the previous section, a number of alternative proposals for estimating α, and thus
Vi(β,α), were described. All of these approaches broadly fall within the framework of GEE1.
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That is, all of the approaches discussed so far use estimating equations for β given by (3.2),
and differ only in terms of how α, and hence Vi(β,α), is estimated. In this section we
discuss a second-order extension of generalized estimating equations, hereafter referred to
as GEE2 (Zhao and Prentice, 1990; Liang, Zeger, and Qaqish, 1992). To do so, we need to
introduce some additional notation. Let

Yi = (Yi1, . . . , Yini
, Yi1Yi2, . . . , Yi,ni−1Yini

)′ = (Y ′
i,Z

′
i)

′,

Πi = E(Yi|Xi,β,α) and, in an ever so slight departure from previous notation, Vi ≈
Cov(Yi|Xi). Then, the GEE2 estimating equations for θ = (β′,α′)′ are given by

u2(θ) =
N∑
i=1

D′
iV−1

i {Yi − Πi(θ)} = 0, (3.15)

where Di = ∂Πi(θ)/∂θ. Note that, unlike GEE1, Di (and Vi) in GEE2 is not block-diagonal
and thus the estimating equations for β depend on Yi = (Y ′

i,Z
′
i)

′, and not simply on Y i. As
a consequence, the GEE2 estimating equations for β given by (3.15) are quite different from
the GEE1 estimating equations for β given by (3.2). In particular, for the GEE2 estimator
of β to be consistent, the model for all elements of Yi must be correctly specified; that is,
the first two moments of Y i must be correctly specified. GEE2 can yield substantial bias in
estimators of both β and α (Fitzmaurice, Lipsitz, and Molenberghs, 2001) if assumptions
about second moments are misspecified. This is in contrast to GEE1 where a consistent
estimator of β is obtained provided only that the mean of Y i has been correctly specified.

The main appeal of GEE2 is that it is almost fully efficient for both the marginal regres-
sion parameters, β, and the within-subject associations, α. Note that the working covari-
ance matrix Vi is usually obtained by making additional assumptions about the third and
fourth moments of Y i. Some alternative specifications for the third and fourth moments are
discussed in Zhao and Prentice (1990) and Liang, Zeger, and Qaqish (1992). Thus, a no-
table feature of GEE2 is that it makes additional assumptions about higher-order moments.
Furthermore, specification of these higher-order moments can greatly increase the compu-
tational complexity and make implementation of the method somewhat more difficult; it
is notable that none of the major statistical software packages currently have options for
GEE2.

Finally, we note that some authors refer to the solution to (3.2) and (3.13) as GEE2; in
contrast, we prefer to reserve the term GEE2 to refer to estimators that require the first
two moments of Y i to be correctly specified in order to yield consistent estimators of β
and α. That is, in contrast to GEE1 estimators, GEE2 estimators of β are not robust to
misspecification of the second moments.

3.4 GEE with missing data

Although most longitudinal studies are designed to collect complete data on all participants,
missing data very commonly arise and must be properly accounted for in the analysis; oth-
erwise, biased estimators of longitudinal change can result. When longitudinal data are
missing, the data set is necessarily unbalanced over time because not all individuals have
the same number of repeated measurements at a common set of occasions. This feature of
missingness creates no difficulties for the standard GEE method as it can handle the un-
balanced data without having to discard data on individuals with any missing data. That
is, when some individuals’ response vectors are only partially observed, the standard GEE
approach circumvents the problem of missing data by simply basing inferences on the ob-
served responses. However, the validity of this method of analysis will require that certain
assumptions about the reasons for any missingness, often referred to as the missing-data
mechanism, are tenable.
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The missing-data mechanism can be thought of as a model that describes the proba-
bility that a response is observed or missing at any occasion. Here, we briefly review and
distinguish two general types of missing-data mechanisms; see Chapter 17 for a more de-
tailed description. The two missing-data mechanisms are referred to as missing completely
at random (MCAR) and missing at random (MAR) (Rubin, 1976; Laird, 1988). These two
mechanisms differ in terms of assumptions concerning whether or not missingness is related
to responses that have been observed. The distinction between these two mechanisms de-
termines the appropriateness of standard GEE methods. Specifically, the standard GEE
method yields consistent marginal regression parameter estimators provided the responses
are MCAR (see, for example, Laird, 1988).

Data are said to be MCAR when the probability that responses are missing is unre-
lated to either the specific values that, in principle, should have been obtained (the missing
responses) or the set of observed responses. Thus, longitudinal data are MCAR when miss-
ingness in Y i is simply the result of a chance mechanism that does not depend on either
observed or unobserved components of Y i. To better understand this missing-data process,
consider the simple case where there are only two measurement occasions with the outcome
fully observed on all subjects at the first occasion, and missing on some subjects at the
second occasion. Because the outcome can be missing at the second occasion only, we can
define the single indicator random variable Ri2, which equals 1 if Yi2 is observed and 0 if
Yi2 is unobserved. The missing data are said to be MCAR if

Pr(Ri2 = 1|Yi1, Yi2, Xi) = Pr(Ri2 = 1|Xi);

that is, the probability that Yi2 is missing does not depend on the observed value of Yi1 or
the possibly missing value of Yi2. We note that the use of the term MCAR is sometimes
restricted to the case where

Pr(Ri2 = 1|Yi1, Yi2, Xi) = Pr(Ri2 = 1);

this distinction only becomes important when an analysis is based on a subset of the co-
variates in Xi that excludes a covariate that is predictive of Ri2. The essential feature of
MCAR is that the observed data can by thought of as a random sample of the complete data.
As a result, all of the moments of the observed data do not differ from the corresponding
moments of the complete data. This property provides the validity for the standard GEE
method that bases inferences on the observed responses.

In contrast to MCAR, data are said to be MAR when the probability that responses are
missing depends on the set of observed responses, but is unrelated to the specific missing
values that, in principle, should have been obtained. For the simple bivariate response
example considered previously, the missing data are said to be MAR if

Pr(Ri2 = 1|Yi1, Yi2, Xi) = Pr(Ri2 = 1|Yi1, Xi); (3.16)

that is, the probability that Yi2 is missing depends on Yi1 (and Xi), but is conditionally
independent of the possibly missing value of Yi2. Because the missing-data mechanism now
depends upon observed responses, the sample moments based on the available data are
biased estimates of the corresponding moments in the target population. Consequently, when
data are MAR, the standard GEE method that bases inferences on the observed responses
can yield biased regression parameter estimates. Finally, if Pr(Ri2 = 1|Yi1, Yi2, Xi) depends
in any way on the possibly missing outcome Yi2, the missing data are said to be not missing
at random (NMAR) or oftentimes referred to as being “non-ignorably” missing. The case
of NMAR is beyond the scope of this chapter; see Chapters 20 and 22 for a more in-depth
discussion of this topic.

When missing data are assumed to be MAR, there are two general approaches for han-
dling this problem within the GEE framework: multiple imputation (e.g., Paik, 1997) and
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weighted estimating equations (Robins, Rotnitzky, and Zhao, 1995). The idea behind mul-
tiple imputation is very simple: substitute or fill in the values that were not recorded with
imputed values. However, to reflect the uncertainty inherent in the imputation of the un-
observed responses, the imputation process is repeated multiple times. The imputations
are typically based on some assumed model for the missing data given the observed data.
The attractive feature of imputation methods is that, once a filled-in data set has been
constructed, the standard GEE method for complete data can be applied. The multiple
filled-in data sets produce different sets of parameter estimates and their standard errors
that are then appropriately combined to provide a single estimate of the parameters of inter-
est, together with standard errors that reflect the uncertainty inherent in the imputation of
the unobserved responses. There is an extensive literature on multiple imputation, and the
reader can find an excellent review of this topic in Chapter 21. We do not discuss multiple
imputation for GEE any further because, to date, there is no overwhelming concensus on
the best way to impute discrete longitudinal data; see Chapter 21 for more details.

The second general approach for handling data that are MAR is via weighted estimating
equations. In one of the simplest versions of the weighted estimating equations approach,
an individual’s contribution to the standard GEE is weighted inversely by the probability
of being observed at the given times. The key idea behind weighting methods is that the un-
derrepresentation of certain response profiles in the observed data is taken into account and
corrected. The weighted estimating equations approach is best suited to the case of mono-
tone missing-data patterns as might arise when missingness is due to attrition or dropout.
A variety of different weighting methods that adjust for dropout have been proposed. These
approaches are often called propensity weighted or inverse probability weighted methods;
see Chapter 20 for an excellent discussion of these methods. In all of these methods the
underlying idea is to base estimation on the observed responses but weight them to account
for the probability of remaining in the study.

Inverse probability weighted methods were first proposed in the sample survey literature,
where the weights are known and based on the survey design (e.g., Horvitz and Thompson,
1952). In the weighted estimating equations approach, however, the weights are not known
but must be estimated based on an assumed model for dropout. The propensities for dropout
can be estimated as a function of the observed responses prior to dropout, and also as a
function of the covariates and any extraneous variables that are thought likely to predict
dropout.

Consider the simple example introduced earlier where there are only two measurement
occasions and any missingness is restricted to the second occasion. In this simple case, the
missing-data pattern is monotone. Furthermore, let us assume the data are MAR as in
(3.16) and let

πi = πi(γ) = Pr(Ri2 = 1|Yi1, Xi, γ),

a function of possibly unknown parameters γ. The basic idea underlying the weighted GEE
method is to weight each individual’s contribution to the standard GEE by the inverse
probability of being observed, thereby accounting for those subjects with the same history
of responses and covariates (yi1, Xi), but who were missing Yi2. Specifically, the GEE in
(3.2) is weighted by the inverse probabilities to yield a simple “weighted GEE,”

N∑
i=1

(
Ri2

πi
+

1 −Ri2

1 − πi

)(
∂μi

∂ β

)′
V −1
i {(Y i − μi(β)} = 0. (3.17)

Note that when Ri2 = 1, then Y i = (Yi1, Yi2) and, similarly, μi = (μi1, μi2); but when
Ri2 = 0, then Y i = Yi1 and, similarly, μi = μi1.

The intuition behind this approach is that it reweights the observed data to mimic
what would likely be seen in a data set without missing data, thereby producing unbiased
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estimating equations and consistent estimators for β. In particular, under MAR as in (3.16),

πi = πi(γ) = Pr(Ri2 = 1|Yi1, Yi2, Xi, γ) = Pr(Ri2 = 1|Yi1, Xi, γ),

or, equivalently,

E

(
Ri2

πi

∣∣∣∣∣ Yi1, Yi2, Xi

)
= E

(
Ri2

πi

∣∣∣∣∣ Yi1, Xi

)
= 1.

Therefore, the estimating equations given by (3.17) are unbiased for 0 at the true β,

E

[ (
Ri2

πi
+

1 −Ri2

1 − πi

) (
∂μi

∂ β

)′
V −1
i {Y i − μi(β)}

]

= E

[
E

{(
Ri2

πi
+

1 −Ri2

1 − πi

) ∣∣∣∣∣ Yi1, Yi2, Xi

}(
∂μi

∂ β

)′
V −1
i (Y i − μi(β))

]

= E

[ (
πi

πi
+

1 − πi

1 − πi

) (
∂μi

∂ β

)′
V −1
i {Y i − μi(β)}

]

= 2E

[ (
∂μi

∂ β

)′
V −1
i {Y i − μi(β)}

]
= 0.

As the estimating equations are unbiased for 0, using results from method of moments, the
solution β̂ to (3.17) defines a consistent estimator for β.

Unlike in the survey sampling setting where πi is known, here πi is unknown and will
need to be replaced in (3.17) with an estimate; this estimate can be obtained using, for
example, a logistic regression model with “outcome” Ri2 and “predictors” (yi1, Xi). In
general, the validity of most weighting methods requires that the model for the missing-
ness probabilities, πi, has been correctly specified. We note that the weighted GEE given
above is a very simple special case of a general class of weighted estimators. In particular,
Robins, Rotnitzky, and Zhao (1995) discuss more general weighted estimating equations for
longitudinal data and the construction of “semi-parametric efficient” weighted estimating
equations; see Chapter 20 for an excellent summary of these developments. Finally, Robins
(2000) and Robins and Rotnitzky (2001) have also recently developed so-called “doubly
robust” weighted estimators that relax the assumption that the model for the missingness
probabilities, πi, has been correctly specified, albeit requiring additional assumptions on the
model for Y i given Xi. Doubly robust methods require the specification of two models, one
for the missingness probabilities and another for the distribution of the complete data. For
doubly robust estimation, the weighted GEE is augmented by a function of the response.
When this augmentation term is selected and modeled correctly according to the distribu-
tion of the complete data, the estimator of β is consistent even if the model for missingness
is misspecified. On the other hand, if the model for missingness is correctly specified, the
augmentation term does not need to be correctly specified to yield consistent estimators

Rotnitzky, 2001; van der Laan and Robins, 2003; Bang and Robins, 2005; see also Lipsitz,
Ibrahim, and Zhao, 1999; Lunceford and Davidian, 2004). Thus, the appealing property of
doubly robust methods is that they yield estimators that are consistent when either, but not
necessarily both, the model for the missingness mechanism or the model for the distribution
of the complete data has been correctly specified. These estimators are doubly robust in the
sense of providing double protection against model misspecification. See Chapter 23 for a
more detailed discussion of doubly robust estimators.
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As noted previously, the weighted estimating equations approach is best suited to the case
of monotone missing-data patterns. However, in many longitudinal studies an individual’s
response can be missing at one follow-up time, and be measured at the next follow-up time,
resulting in a large class of distinct missingness patterns. This is often referred to as “inter-
mittent” missingness or non-monotone missingness. In that setting, approximate methods
have been proposed for handling missing data that are assumed to be MAR but not MCAR.
For example, via simulations and asymptotic studies, Lipsitz et al. (2000) and Fitzmaurice,
Lipsitz, and Molenberghs (2001) show that the GEE1 using the second set of “Gaussian”
estimating equations described in Section 3.3.1 yields estimators of β with relatively small
bias in many settings. However, this method does require that the within-subject associ-
ation, usually considered a nuisance characteristic of the data, is correctly specified. The
method does not, however, require estimation of the missingness probabilities, πi.

3.5 Goodness-of-fit and model diagnostics

As is the case for any generalized linear model, model checking is an important aspect of
the fitting of marginal models to longitudinal data. However, because GEE methods are not
likelihood-based, many of the standard goodness-of-fit statistics and model diagnostics are
not immediately available. In this section we very briefly review some recent literature on
this topic; further research on model diagnostics is needed.

Recall that in linear regression with independent univariate outcome data, Cook’s dis-
tance and so-called “DFBETAs” are widely used measures of influence (see, for example,
Belsley, Kuh, and Welsch, 1980; Cook and Weisberg, 1982). Specifically, DFBETAs assess
how each coefficient is changed by including the observation from the ith subject, thereby
measuring the influence or effect that the ith subject has on the estimate of the regression
parameters β. It is calculated by deleting the ith observation, and recomputing the ordinary
least-squares estimate of β. Because ordinary least squares is non-iterative, fast computer
algorithms have been developed to recompute the estimate of β for each subject. Pregibon
(1981) extended DFBETAs to logistic regression using one-step estimators of β. Preisser
and Qaqish (1996) extended DFBETAs in a similar way within the GEE approach. Their
one-step DFBETAs for GEE require deletion of the ni repeated measures for the ith subject.
That is, conditional on the estimate α, a “one-step” estimate of β, say β̂−i, is obtained
by excluding the ni repeated measures for the ith subject and performing one step of the
Fisher scoring algorithm described in Equation (3.7) with the full-data estimate β̂ as the
starting value,

β̂−i = β̂ +

⎡⎣ N∑
k=1,k �=i

D′
k(β̂){Vk(β̂, α̂)}−1Dk(β̂)

⎤⎦−1
N∑

k=1,k �=i

D′
k(β̂)V −1

k (β̂, α̂){Y k − μk(β̂)}.

To obtain a unitless, composite measure of the influence of each subject on the entire set of
regression coefficients, a statistic similar to Wilks’s (1963) statistic for multivariate outliers,

wi = (β̂−i − β̂)′{Ĉov(β̂)}−1(β̂−i − β̂),

can be used. A large value of wi (relative to the other wis) indicates that the ith subject
may have unusually high influence. Using Wilks’s (1963) criterion as a very rough guide,
{(N − p− 1)(N − 1)/(Np)}wi has an approximate F -distribution with p (the dimension of
β) and N−p−1 degrees of freedom (for example, see Lipsitz, Laird, and Harrington, 1992).

Goodness-of-fit criteria for generalized estimating equations have also been developed.
For example, Pan (2001) proposed an extension of Akaike’s information criterion (AIC) to
GEE. For the special case of longitudinal binary data, Barnhart and Williamson (1998)
and Horton et al. (1999) proposed goodness-of-fit tests for GEE that are extensions of
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the Hosmer–Lemeshow goodness-of-fit test for logistic regression (Hosmer and Lemeshow,
1980). Here, we briefly review goodness-of-fit statistics for GEE. Suppose it is of interest to
determine whether or not the marginal model

μij =
exp(X ′

ijβ)
1 + exp(X ′

ijβ)

provides an adequate fit to the data. A standard approach is to fit a broader model (e.g.,
a model with interactions and/or polynomial and higher-order terms) and test whether the
additional terms are significantly different from zero. Alternatively, a “global goodness-of-
fit” statistic can be obtained by extending the Hosmer–Lemeshow statistic (Hosmer and
Lemeshow, 1980; see also Tsiatis, 1980). Following the suggestion of Hosmer and Lemeshow
for ordinary logistic regression, G (usually 10) groups can be formed based on combinations
of the covariates Xij in the logistic regression model. A test for goodness of fit is constructed
by testing whether the additional regression coefficients for the G − 1 indicator variables
differ from zero. Following Hosmer and Lemeshow, Horton et al. (1999) suggest forming
groups based on deciles of the predicted probabilities from the given model,

μ̃ij =
exp(X ′

ijβ̂)

1 + exp(X ′
ijβ̂)

.

Note that each subject has ni separate estimates of risk (μ̃ijs) and that there are
∑N

i=1 ni

observations in total. Horton et al. (1999) suggest forming 10 groups of approximately equal
size from the deciles of these predicted probabilities. For example, the first group contains
the
∑N

i=1 ni/10 (Yij ,Xij)s with the smallest values of μ̃ij , and the last group contains the∑N
i=1 ni/10 (Yij ,Xij)s with the largest values of μ̃ij . Finally, defining the G − 1 group

indicators

Iijg =
{

1 if μ̃ij is in group g,
0 otherwise, g = 1, . . . , G− 1,

where the groups are based on “percentiles of risk,” a test for goodness of fit is obtained by
considering the alternative model

logit(μij) = X ′
ijβ + γ1Iij1 + . . . + γG−1Iij,G−1.

Specifically, the score statistic given in (3.10) can be used to test the null hypothesis

H0 :γ1 = . . . = γG−1 = 0.

Finally, graphical displays are very useful techniques for conveying information about
the most salient features of longitudinal data. They can provide insights about patterns of
change in the mean response over time (e.g., linearity or the lack thereof) and the choice
of suitable functional forms for covariates. Graphical techniques, especially those based
on residuals, are especially useful for assessing the adequacy of any postulated model for
longitudinal data. They are also useful for identifying observations and individuals that
are potential outliers. With appropriate transformations, residual diagnostics developed
for standard linear regression can be extended to the longitudinal setting. However, an
acknowledged difficulty with conventional residual diagnostics is that they are somewhat
subjective in nature. What appears to be a random scatter to one individual might be
considered evidence of systematic trend to another. That is, it can be very difficult to
discern whether an apparent trend in a scatter plot of the residual reflects some aspect of
model misspecification or is simply a reflection of natural variation. McCullagh and Nelder
(1989, pp. 392–393) aptly summarize this problem when they state that “the practical
problem is that any finite set of residuals can be made to yield some kind of pattern if we
look hard enough, so that we have to guard against over-interpretation.”
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Recently, Lin, Wei, and Ying (2002) developed model-checking techniques based on “cu-
mulative sums” and “moving sums” of residuals that help discern the “signal” from the
“noise.” The basic idea is to aggregate the residuals over certain coordinates. The coor-
dinates typically used for these sums of residuals are the individual covariates (e.g., Xijk,
the kth covariate) and the fitted values, h(X ′

ijβ̂). These authors demonstrated that a key
advantage of working with sums of residuals, rather than crude residuals, is that a reference
distribution is available to ascertain their natural variation. That is, the observed sums of
the residuals can be compared, both graphically and numerically, to a reference distribution
under the assumption of a correctly specified marginal model for the mean. This allows for
the determination of whether any apparent pattern is evidence of a systematic trend or
simply due to natural variation. This model-checking technique developed by Lin, Wei, and
Ying (2002) removes a large degree of subjectivity from the assessment of graphical displays
of residuals and places residual diagnostics on a more objective footing.

Specifically, if the assumed model for the mean response is correct, then the cumulative
sums of residuals are centered at zero. Moreover, the distribution of the cumulative sum
can be approximated by that of a Gaussian process with zero mean whose realizations can
be generated via computer simulation. It is relatively straightforward to generate realiza-
tions from the distribution of the cumulative sum, under the assumption that the model
for the mean is correct (the details are omitted here and the interested reader is referred
to Lin, Wei, and Ying, 2002). Thus, to assess whether any apparent trend in the observed
cumulative sum of residuals reflects systematic trends rather than chance fluctuations, a
number of realizations from the appropriate Gaussian process can be superimposed. To the
extent that the curves generated from the null distribution tend to be closer to and intersect
zero more often than the observed curve, this provides evidence of lack of fit. This assess-
ment can be put on a more formal footing by comparing the maximum absolute value of
the observed cumulative sum to a large number of realizations (say 10,000) from the null
distribution.

An appealing feature of the graphical and numerical methods based on cumulative and
moving sums of residuals is that they are valid regardless of the true joint distribution of
the longitudinal response vector; in particular, they do not require correct specification of
the covariance among the responses. As such, these graphical and numerical techniques for
assessing the model for the mean response are relatively robust to assumptions about the
distribution of the responses and assumptions about the covariance among the repeated
measures.

3.6 Case study

In this section we present results of analyses of cardiovascular abnormalities from a longitu-
dinal study of children infected with HIV-1 to illustrate some of the main ideas highlighted
in earlier sections. Results from various cross-sectional and short-term longitudinal stud-
ies (Lipshultz et al., 1998) have suggested that children infected with HIV-1 might have
higher risks of cardiovascular abnormalities. We consider this hypothesis using data from
the Pediatric Pulmonary and Cardiac Complications (P2C2) of Vertically Transmitted HIV
Infection Study (Lipshultz et al., 1998). This was a large, prospective longitudinal study
designed to monitor heart disease and the progression of cardiac abnormalities in children
born to HIV-infected women. In the P2C2 study, a birth cohort of 401 infants born to
women infected with HIV-1 were scheduled to have their cardiovascular function measured
approximately every year from birth to age 6, producing up to seven repeated measurements
of cardiovascular function on each child. Of the 401 infants who participated in this study,
74 (18.8%) were HIV positive, and 319 (81.2%) were HIV negative.

© 2009 by Taylor & Francis Group, LLC



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
98

.1
04

 A
t: 

06
:0

1 
17

 O
ct

 2
02

1;
 F

or
: 9

78
14

20
01

15
79

, c
ha

pt
er

3,
 1

0.
12

01
/9

78
14

20
01

15
79

.c
h3

June 2, 2008 16:32 C6587 C6587˙C003

CASE STUDY 65

Table 3.1 Data from 10 Randomly Selected Children from the P2C2 Study

Heart Pumping Ability at AgeaMom Gest. Low Birth
Subject HIVb Smokedc Age (wks) Weightd Birth 1 2 3 4 5 6

1 1 0 41 0 0 0 0 0 0 0 .
2 1 1 34 0 1 . 0 0 1 . .
3 0 1 40 0 1 0 0 . . . .
4 1 0 40 0 0 . 0 0 0 1 .
5 0 1 39 0 . 1 0 . . . .
6 0 1 35 0 1 . . . . . .
7 0 0 36 0 . 0 0 . . . .
7 1 0 33 1 . 1 1 1 . . .
8 0 0 36 1 0 0 . . . . .
9 0 0 41 1 . . . . 0 . .
10 0 1 34 1 . 0 0 . 0 1 0

( . = missing)
a 1 = abnormal, 0 = normal.
b 1 = HIV positive, 0 = not HIV positive.
c 1 = mother smoked during pregnancy, 0 mother did not smoke.
d 1 = low birth weight for age, 0 = normal birth weight.

The question of main scientific interest is to determine if children infected with HIV-1 have
worse heart function over time. In particular, we are interested in modeling the pumping
ability of the heart (left ventricular fractional shortening) over time. The outcome variable
for this analysis is a binary response denoting abnormally low left ventricular fractional
shortening (1 = low fractional shortening, 0 = normal) at each occasion. For these data,
we are interested in modeling the marginal means or, equivalently, the probabilities of
abnormal heart function over time, and relating changes in these marginal probabilities to
covariates. The main covariate is the indicator of HIV infection; it is of interest to estimate
the effect of HIV infection on heart function over time. Previous results (Lipshultz et al.,
1998, 2000, 2002) from the P2C2 study have shown that subclinical cardiac abnormalities
develop early in children born with HIV, and that they are frequent, persistent, and often
progressive.

Thus, for these analyses we are interested in assessing whether children with HIV have
progressively worse heart function over time compared to non-HIV children. In the regression
model for abnormal heart function, this translates into a test of the time-by-HIV status
interaction. For these analyses, potential confounding variables that must be adjusted for
include mother’s smoking status during pregnancy (coded 1 = yes, 0 = no), gestational age
(in weeks), and birth weight standardized for age (coded 1 = abnormal, 0 = normal). Data
from 10 randomly selected children are displayed in Table 3.1.

We note that there is a substantial amount of missing data. Although each child was
scheduled to have an echocardiogram every year for the first 6 years of life, including at
birth, only 1 (0.25%) of the 401 study participants had outcomes measured at all seven
occasions; see Table 3.2 for the frequency distribution of the number of repeated echocar-
diograms. Table 3.3 shows the number of subjects with echocardiogram measurements at
each of the seven measurement occasions. From Table 3.2, we see that only 91 subjects
(22.7%) were seen on more than three occasions. From Table 3.3, we see that 276 of the 401
children (68.8%) have baseline measurements; after birth, the percentage of children with
echocardiogram measurements declines until only 7 (1.7%) of the 401 subjects have mea-
surements at 6 years of age. For illustrative purposes, the analyses presented here assume
that the missing responses are MCAR (Rubin, 1976; Laird, 1988). As discussed in Section
3.4, when the outcome data are MCAR, all GEE approaches yield consistent estimators of
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Table 3.2 Frequency Distribution of the Number
of Echocardiograms for Children in the P2C2 Study

Number of Number of
Echocardiograms Subjects Percentage

1 148 36.91
2 104 25.94
3 58 14.46
4 50 12.47
5 30 7.48
6 10 2.49
7 1 0.25

Total 401 100.00

the regression parameters provided the model for the mean is correctly specified. However,
we caution the reader that a substantive analysis of these data would require a far more

this topic).
To examine the effect of HIV-1, we considered the following marginal logistic regression

model for the probability of abnormal heart function at time tj , denoted μij :

log
(

μij

1 − μij

)
= β0 + β1tj + β2HIVi + β3tjHIVi + β4smokei + β5agei + β6wti,

for j = 1, . . . , 7, where tj = j − 1, HIVi equals 1 if the ith child is born with HIV-1
and equals 0 otherwise; smokei equals 1 if the mother smoked during pregnancy and 0
otherwise; agei is the gestational age (in weeks); and wti equals 1 if the child’s birth weight
for gestational age was abnormal and 0 otherwise. Because there are so few children with
echocardiogram measurements after age 4, there are insufficient data to fit an unstructured
correlation matrix with (7 × 6)/2 = 21 parameters,

ρist = Corr(Yis, Yit;α) = ρst.

Instead, to account for the within-subject association among the binary responses, we con-
sider two possible “working correlation” patterns: “exchangeable,” in which ρist = α for all
s < t, and AR(1), with

ρist = α|t−s|,

where 0 < α < 1.
Finally, to illustrate similarities and differences between various GEE estimation tech-

niques, we compare the estimates of (β, α) obtained using six approaches: (1) GEE under
“working independence” (equivalent to ordinary logistic regression); (2) standard GEE1

Table 3.3 Frequency Distribution of the Number
of Children with Echocardiograms at Each Occasion

Age at Number of
Visit (Years) Subjects Percentage

Birth 276 68.83
1 267 66.58
2 154 38.40
3 123 30.67
4 83 20.70
5 37 9.23
6 7 1.75

© 2009 by Taylor & Francis Group, LLC
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with estimation of α based on unconditional residuals; (3) GEE1 with estimation of α based
on conditional residuals; (4) GEE1 with Gaussian estimation of α; (5) GEE2 with Vi in
(3.15) specified using the Bahadur distribution (Bahadur, 1961); and (6) maximum likeli-
hood using the parametric Bahadur distribution, which is based on two- and higher-order
correlations.

Because the Bahadur distribution is used in both the GEE2 and ML approaches, we
provide a brief description here. We define the standardized binary variable Sij as

Sij =
Yij − μij

{μij(1 − μij)}1/2
.

The pairwise correlation between Yij and Yik is ρjk = E(SijSik), and the Rth-order corre-
lation between the first R responses is defined as ρ12...R = E(Si1Si2 . . . SiR). The Rth-order
correlation between any R of the n repeated binary responses is defined similarly. The
Bahadur representation of the 2n − 1 multinomial probabilities corresponding to the joint
distribution of (Yi1, Yi2, . . . , Yin) is

Pr{Yi1 = y1, Yi2 = y2, . . . , Yin = yn|Xi,β,α} =

⎧⎨⎩
n∏

j=1

μ
yij

ij (1 − μij)1−yij

⎫⎬⎭
×

⎧⎨⎩1 +
∑
j>k

ρjksijsik +
∑

j>k>l

ρjklsijsiksil + · · · + ρ1...nsi1 · · · sin

⎫⎬⎭.

For both GEE2 and ML approaches, we assumed all fifth- and higher-order correlations are
0 (ρjklmn = · · · = ρ1...n = 0). In addition, we assumed that all fourth-order correlations
are the same, regardless of the sets of times (ρjklm = ρj′k′l′m′ for all jklm �= j′k′l′m′), and
that all third-order correlations are the same, regardless of the sets of times (ρjkl = ρj′k′l′

for all jkl �= j′k′l′). The two models for the pairwise correlations ρst (exchangeable and
autoregressive) are the same for all six estimation methods.

The logistic regression parameter estimates and standard errors are presented in Table 3.4
for the “working independence” GEE and GEE1 with exchangeable correlation estimated us-
ing unconditional residuals. Table 3.4 presents both model-based and empirical (or so-called
sandwich) variance estimates. As might be expected, the most discernible differences be-
tween the model-based and empirical standard errors occur for the “working independence”
GEE. This is because the naive assumption of independence among repeated binary re-
sponses obtained from the same child is “furthest” from the true underlying within-subject
correlation. In general, when the true correlation among repeated measures is high, the
differences between the model-based and empirical standard errors for the “working inde-
pendence” GEE can be substantial; the former provide unrealistic estimates of the sampling
variability. For the data from the P2C2 study, the estimated correlation is relatively modest
(assuming an exchangeable correlation, the estimated correlation is 0.15); consequently, the
differences between the model-based and empirical standard errors are not too extreme. For
example, for the “working independence” GEE, the largest differences are in the estimated
variance of the time-by-HIV infection interaction, with the empirical variance being almost
1.5 (or [0.16/0.13]2) times larger than the model-based variance, and in the gestational age
effect where the empirical variance is almost 1.4 (or [0.36/0.31]2) times larger than the
model-based variance. We note that for the “working independence” GEE the model-based
variance is not necessarily always smaller than the empirical variance; their relative size de-
pends on whether the parameter of interest is the effect of a time-varying (or within-subject)
or time-stationary (or between-subject) covariate, the magnitude of the correlation, and the
proportion of missing data over time (see Mountford et al., 2007, for a more detailed dis-
cussion). We also note that for the GEE1 with exchangeable correlation estimated using
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Table 3.4 Regression Parameter Estimates with Model-Based and Empirical Standard
Errors (SE) for Independence GEE and GEE1 with Exchangeable Correlation Estimated
Using Unconditional Residuals

Model Empirical
Effect Method Estimate SE SE Wald Z p-Value

Intercept IND 2.284 1.236 1.508 1.51 0.130
GEE1 1.763 1.416 1.468 1.20 0.230

Time IND −0.600 0.076 0.097 −6.16 <0.001
GEE1 −0.630 0.078 0.096 −6.54 <0.001

HIV IND −0.069 0.252 0.266 −0.26 0.796
GEE1 −0.081 0.255 0.266 −0.30 0.761

Time*HIV IND 0.204 0.130 0.159 1.28 0.200
GEE1 0.283 0.125 0.149 1.90 0.058

Mom Smoke IND −0.196 0.153 0.175 −1.12 0.263
GEE1 −0.219 0.175 0.168 −1.31 0.191

Gest. Age IND −0.058 0.031 0.038 −1.52 0.130
GEE1 −0.044 0.036 0.037 −1.19 0.233

Low Birth Wt. IND 0.048 0.163 0.198 0.24 0.810
GEE1 0.096 0.186 0.186 0.52 0.604

unconditional residuals, there are fewer differences between the model-based and empirical
standard errors. However, the small number of discernible differences (e.g., the estimated
variances of the time-by-HIV interaction) suggest that the model for the correlation could
potentially be improved. That is, if the working model for the correlation has been correctly
specified, in general, we would expect the model-based and empirical standard errors to be
relatively similar.

Based on the regression parameter estimates and empirical standard errors from the
GEE1 with exchangeable correlation, there is the suggestion that the pattern of change
in risk of abnormal heart function differs by HIV-1 infection group (Z = 1.90, p < 0.06).
Specifically, after adjustment for maternal smoking during pregnancy, gestational age, and
birth weight, the risk decreases at a slower rate in the HIV-1 infected children. Note that
the interpretation of the results is very similar to the interpretation of results from an or-
dinary logistic regression model for cross-sectional data. For example, children with HIV-1
infection have exp(β̂2 + β̂3tj) = exp(−0.081+0.285tj) times the odds of having an abnormal
pumping ability compared to children without HIV-1 infection at time tj . Specifically, at
birth (t1 = 0), the ratio of their odds of having an abnormal pumping ability is approxi-
mately 1 (exp(−0.081) = 0.92), while at year 6 the ratio of their odds is approximately 5.0
(exp(−0.081 + 6 × 0.285) = 5.1).

For illustrative purposes, Table 3.5 presents the parameter estimates (and empirical stan-
dard error estimates) obtained from all five methods for a “working exchangeable” correla-
tion. Note that the regression parameter estimates and estimated standard errors from the
three GEE1 methods are very similar to each other. In contrast, the regression parameter
estimates from GEE2 are somewhat different. Recall that GEE2 requires the stronger as-
sumption that both the first and second moments must be correctly specified. For these data,
the empirical standard errors for GEE2 estimates are similar to those for GEE1; however,
this result is not to be expected in general. Finally, as expected, ML yields the smallest
estimated variances for the estimated regression parameters. The largest gain in efficiency
is for the time-by-HIV infection interaction, the effect of greatest subject-matter interest.
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Table 3.5 Comparison of Parameter Estimates (and Empirical
Standard Errors) under an Exchangeable Correlation

Effect Method Estimate SE Wald Z p-Value

Intercept GEE1 (uncond) 1.763 1.468 1.20 0.230
GEE1 (cond) 1.851 1.470 1.26 0.208
GEE1 (Gaussian) 1.822 1.469 1.24 0.216
GEE2 2.126 1.443 1.47 0.141
ML 1.733 1.336 1.30 0.195

Time GEE1 (uncond) −0.630 0.096 −6.54 <0.001
GEE1 (cond) −0.626 0.096 −6.49 <0.001
GEE1 (Gaussian) −0.627 0.096 −6.51 <0.001
GEE2 −0.583 0.095 −6.16 <0.001
ML −0.678 0.084 −8.10 <0.001

HIV GEE1 (uncond) −0.081 0.266 −0.30 0.761
GEE1 (cond) −0.079 0.265 −0.30 0.765
GEE1 (Gaussian) −0.080 0.265 −0.30 0.764
GEE2 −0.047 0.274 −0.17 0.865
ML −0.037 0.255 −0.15 0.884

Time*HIV GEE1 (uncond) 0.283 0.149 1.90 0.058
GEE1 (cond) 0.271 0.151 1.80 0.072
GEE1 (Gaussian) 0.275 0.150 1.83 0.068
GEE2 0.264 0.156 1.70 0.089
ML 0.287 0.122 2.35 0.019

Mom Smoke GEE1 (uncond) −0.219 0.168 −1.31 0.191
GEE1 (cond) −0.215 0.168 −1.28 0.201
GEE1 (Gaussian) −0.216 0.168 −1.29 0.198
GEE2 −0.249 0.166 −1.50 0.134
ML −0.241 0.159 −1.51 0.131

Gest. Age GEE1 (uncond) −0.044 0.037 −1.19 0.233
GEE1 (cond) −0.047 0.037 −1.25 0.211
GEE1 (Gaussian) −0.046 0.037 −1.23 0.219
GEE2 −0.055 0.036 −1.52 0.128
ML −0.043 0.034 −1.27 0.204

Low Birth Wt. GEE1 (uncond) 0.096 0.186 0.52 0.604
GEE1 (cond) 0.089 0.187 0.48 0.632
GEE1 (Gaussian) 0.092 0.186 0.49 0.622
GEE2 0.042 0.180 0.23 0.816
ML 0.155 0.168 0.93 0.356

ρ GEE1 (uncond) 0.153 0.120 1.28 0.201
GEE1 (cond) 0.194 0.078 2.47 0.013
GEE1 (Gaussian) 0.165 0.049 3.37 0.001
GEE2 0.174 0.059 2.95 0.003
ML 0.151 0.034 4.42 <0.001

The estimated relative efficiency for GEE1 with exchangeable correlation versus ML is
(0.12/0.15)2 = 66%. However, a potential drawback of ML is that the full joint distribution
of the binary outcomes must be correctly specified; thus, the assumptions made about all
fifth- and higher-order correlations being zero must be correct for ML to yield asymptotically
unbiased estimators of the regression parameters.

Although all GEE1 methods produce similar standard errors for the estimated regression
parameters, this is not the case for the estimated correlation parameter. Specifically, the
GEE1 based on conditional residuals greatly reduces the estimated variance of the corre-
lation compared to GEE1 with unconditional residuals, while GEE1 based on Gaussian
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Table 3.6 Comparison of Parameter Estimates (and Empirical Standard
Errors) under an AR(1) Correlation

Effect Method Estimate SE Wald Z p-Value

Intercept GEE1 (uncond) 2.018 1.506 1.34 0.180
GEE1 (cond) 1.817 1.508 1.20 0.228
GEE1 (Gaussian) 1.978 1.506 1.31 0.190
GEE2 2.118 1.429 1.48 0.138
ML 1.763 1.352 1.30 0.193

Time GEE1 (uncond) −0.634 0.097 −6.50 <0.001
GEE1 (cond) −0.661 0.098 −6.72 <0.001
GEE1 (Gaussian) −0.639 0.098 −6.55 <0.001
GEE2 −0.519 0.095 −5.48 <0.001
ML −0.637 0.088 −7.28 <0.001

HIV GEE1 (uncond) −0.072 0.264 −0.27 0.785
GEE1 (cond) −0.075 0.264 −0.28 0.777
GEE1 (Gaussian) −0.073 0.264 −0.28 0.783
GEE2 −0.073 0.299 −0.24 0.808
ML −0.037 0.269 −0.14 0.891

Time*HIV GEE1 (uncond) 0.242 0.157 1.54 0.123
GEE1 (cond) 0.273 0.155 1.76 0.078
GEE1 (Gaussian) 0.248 0.156 1.58 0.114
GEE2 0.173 0.168 1.03 0.302
ML 0.213 0.140 1.53 0.128

Mom Smoke GEE1 (uncond) −0.199 0.173 −1.15 0.250
GEE1 (cond) −0.200 0.172 −1.16 0.246
GEE1 (Gaussian) −0.199 0.173 −1.15 0.250
GEE2 −0.266 0.174 −1.53 0.127
ML −0.206 0.172 −1.20 0.231

Gest. Age GEE1 (uncond) −0.050 0.038 −1.31 0.190
GEE1 (cond) −0.044 0.038 −1.15 0.249
GEE1 (Gaussian) −0.049 0.038 −1.28 0.202
GEE2 −0.056 0.036 −1.55 0.122
ML −0.043 0.034 −1.26 0.207

Low Birth Wt. GEE1 (uncond) 0.076 0.194 0.39 0.694
GEE1 (cond) 0.100 0.192 0.52 0.603
GEE1 (Gaussian) 0.081 0.193 0.42 0.677
GEE2 0.040 0.188 0.21 0.830
ML 0.096 0.173 0.55 0.581

ρ GEE1 (uncond) 0.167 0.083 2.02 0.043
GEE1 (cond) 0.289 0.063 4.63 <0.001
GEE1 (Gaussian) 0.192 0.059 3.23 0.001
GEE2 0.167 0.076 2.21 0.027
ML 0.206 0.050 4.08 <0.001

estimation reduces the estimated variance even further. Note that GEE1 based on Gaussian
estimation yields a smaller variance estimate than GEE2, although this result cannot be
expected in general.

In Table 3.6, we consider estimates based on the five methods presented in Table 3.5 when
the “working correlation” is assumed to be first-order autoregressive (AR(1)). In general,
the pattern of results in Table 3.6 is similar to that in Table 3.5. With a modest correlation,
it is perhaps not surprising that the estimates of the regression parameters under AR(1) or
exchangeable should be so similar. The imbalance in the data due to missingness probably
accounts for some of the small differences when the results in Table 3.5 and Table 3.6 are
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compared. Also, we remind the reader that all analyses have made the strong assumption
that the missing data are MCAR.

In earlier sections, we remarked that for the GEE2 estimate of β to be consistent the model
for the first two moments of Y i must be correctly specified. This is in contrast to GEE1
where a consistent estimator of β is obtained provided only that the mean of Y i has been
correctly specified. To illustrate the sensitivity of GEE2 estimates of β to misspecification
of the second moments, we fixed the exchangeable correlation at larger and smaller values
than the estimate of ρ̂ = 0.174 obtained in Table 3.5 and re-estimated β. For example, when
ρ is fixed at 0.7, the GEE2 estimate of the time-by-HIV status interaction, the parameter
of main interest, is 0.390 (SE = 0.156), which is discernibly different from the estimate of
0.264 obtained in Table 3.5. Similarly, when ρ is fixed at 0.065, the GEE2 estimate of the
time-by-HIV status interaction is 0.075 (SE = 0.192). This highlights how GEE2 estimates
of β are sensitive to misspecification of the within-subject association.

Finally, in Section 3.2.4 we mentioned that for the special case where the outcome is
binary, an alternative to the correlation as a measure of within-subject association is the
odds ratio. The odds ratio has many desirable properties and, unlike the correlation, is
not constrained by the marginal probabilities, μij . For illustrative purposes, we replicated
the GEE1 analyses in Table 3.5 and Table 3.6 where the within-subject association was
parameterized in terms of log odds ratios rather than correlations. Recall that the joint
distribution of Yis and Yit depends on both β and α, with

πist = E(YisYit|Xis,Xit,β,α) = Pr(Yis = 1, Yit = 1|Xis,Xit,β,α).

This joint probability can be modeled in terms of either the marginal correlation or the
marginal odds ratio. The marginal correlation between the responses at times s and t is

ρist = ρist(α) = Corr(Yis, Yit;α) =
πist − μisμit

{μis(1 − μis)μit(1 − μit)}1/2
.

Note that the joint probability πist can be written in terms of the correlation coefficient as

πist = μisμit + ρist{μis(1 − μis)μit(1 − μit)}1/2.

Alternatively, instead of modeling the association between pairs of binary responses in terms
of the marginal correlation, Lipsitz, Laird, and Harrington (1991), Liang, Zeger, and Qaqish
(1992), and Carey, Zeger, and Diggle (1993) propose using the marginal odds ratio. The
odds ratio between the responses at times s and t is

ψist = ψist(α) =
πist(1 − μis − μit + πist)
(μis − πist)(μit − πist)

.

In terms of the odds ratio, the probability πist can then be written as

πist =

⎧⎨⎩ aist − {a2
ist − 4ψist(ψist − 1)μisμit}1/2

2(ψist − 1)
if ψist �= 1,

μisμit if ψist = 1,

where aist = 1 − (1 − ψist)(μis + μit). An “exchangeable” odds ratio model is given by
ψist = α. As a binary data analog of the AR(1) model for correlation, Fitzmaurice and
Lipsitz (1995) proposed the following serial pattern model for the odds ratio,

ψist = α1/|t−s|,

where 1 < α < ∞. Note that as |t − s| → 0, ψist → α∞ and there is perfect association.
When observations are far apart in time, then as |t− s| → ∞, ψist → α0 = 1 and the pairs
of observations are independent. This serial odds ratio model mimics an AR(1) pattern with
the strength of association declining with increasing time separation. Thus, we can express
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both the “exchangeable” and “serial” odds ratio models as linear models for the log odds
ratio, with

log(ψist) =
(

1
|t− s|

)
log(α)

for the “serial” odds ratio model, and

log(ψist) = log(α)

for the “exchangeable” odds ratio model.
To estimate β and α, under an “exchangeable” or “serial” odds ratio pattern, we can

use the estimating equations proposed by Lipsitz, Laird, and Harrington (1990) based on
unconditional residuals or the estimating equations proposed by Carey, Zeger, and Diggle
(1993) based on conditional residuals; in general, the latter yield more efficient estimators
of α. The results of fitting the two models for the odds ratio pattern using both methods
of estimation are presented in Table 3.7. The pattern of results in Table 3.7 is similar to

Table 3.7 Comparison of Parameter Estimates (and Empirical Standard Errors)
Using Log Odds Ratio as a Measure of Within-Subject Association, Estimated Using
Unconditional and Conditional Residuals

Odds Ratio
Effect Method Model Estimate SE Wald Z p-Value

Intercept GEE1 (uncond) exc 1.870 1.491 1.25 0.210
GEE1 (cond) exc 1.797 1.492 1.20 0.228
GEE1 (uncond) serial 2.003 1.503 1.33 0.183
GEE1 (cond) serial 1.810 1.506 1.20 0.230

Time GEE1 (uncond) exc −0.618 0.096 −6.46 <0.001
GEE1 (cond) exc −0.623 0.096 −6.51 <0.001
GEE1 (uncond) serial −0.618 0.097 −6.41 <0.001
GEE1 (cond) serial −0.637 0.097 −6.58 <0.001

HIV GEE1 (uncond) exc −0.075 0.265 −0.28 0.777
GEE1 (cond) exc −0.078 0.265 −0.30 0.768
GEE1 (uncond) serial −0.061 0.263 −0.23 0.816
GEE1 (cond) serial −0.060 0.263 −0.23 0.819

Time*HIV GEE1 (uncond) exc 0.257 0.150 1.72 0.086
GEE1 (cond) exc 0.269 0.149 1.80 0.071
GEE1 (uncond) serial 0.232 0.154 1.51 0.132
GEE1 (cond) serial 0.256 0.152 1.68 0.093

Mom Smoke GEE1 (uncond) exc −0.202 0.169 −1.20 0.232
GEE1 (cond) exc −0.203 0.168 −1.21 0.228
GEE1 (uncond) serial −0.194 0.172 −1.13 0.258
GEE1 (cond) serial −0.194 0.171 −1.13 0.257

Gest. Age GEE1 (uncond) exc −0.047 0.038 −1.24 0.214
GEE1 (cond) exc −0.045 0.038 −1.19 0.234
GEE1 (uncond) serial −0.050 0.038 −1.31 0.189
GEE1 (cond) serial −0.044 0.038 −1.16 0.244

Low Birth Wt. GEE1 (uncond) exc 0.101 0.188 0.54 0.589
GEE1 (cond) exc 0.110 0.187 0.59 0.555
GEE1 (uncond) serial 0.087 0.192 0.45 0.652
GEE1 (cond) serial 0.111 0.190 0.58 0.559

Log(OR) GEE1 (uncond) exc 0.859 0.931 0.92 0.356
GEE1 (cond) exc 1.051 0.281 3.74 <0.001
GEE1 (uncond) serial 0.788 0.999 0.79 0.430
GEE1 (cond) serial 1.369 0.301 4.54 <0.001
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those in Table 3.5 and Table 3.6, confirming that GEE1 methods are relatively insensitive to
choice of models and methods of estimation for the within-subject association. Interestingly,
the potential benefits of GEE1 based on conditional residuals for estimation of the within-
subject association are highlighted in Table 3.7 where the standard error for the estimated
log odds ratio is discernibly smaller than for GEE1 based on unconditional residuals. For
the parameter of main interest, the time-by-HIV status interaction, the estimates of effects
are similar to those found in Table 3.5 and Table 3.6.

3.7 Discussion and future directions

As discussed in the previous sections, Liang and Zeger (1986) developed generalized esti-
mating equations to estimate the parameters of marginal models; the latter class of models
represent a particular extension of generalized linear models to longitudinal data. Liang
and Zeger (1986) introduced a class of moment-based estimating equations that yield con-
sistent estimators of the regression parameters, and their variances, under relatively mild
conditions. Over the past 20 years, the GEE approach has been the dominant method for
estimation of marginal models for longitudinal data; so much so, indeed, that some authors
confusingly refer to marginal models as “GEE models.” However, it is worth emphasizing
that GEE methods are but one approach for estimating marginal model parameters. More-
over, GEE methods should not be regarded as conjoined at the hip to marginal models;
the estimating equation approach can be applied equally to alternative classes of models
for longitudinal data, such as so-called transitional or response-conditional models (e.g.,
Markov models for longitudinal data) and GLMMs.

The GEE method is semi-parametric, in that the estimating equations are derived without
fully specifying the joint distribution of the vector of repeated measures. This is a very
appealing feature of the GEE approach, especially for the analysis of discrete longitudinal
data, because for the latter case the total number of parameters in the saturated model
for the joint distribution of the vector of responses grows exponentially with the number of
repeated measures. In particular, GEE methods only require specification of the form of the
first two moments of the outcome vector, and provide consistent estimators of the marginal
regression parameters under the weak condition that only the first moment is correctly
specified. That is, provided the marginal model for the mean response (the first moment)
is correctly specified, the estimating equations yield estimators of the marginal regression
parameters that are consistent and asymptotically normal, regardless of whether the second
moments have been correctly specified.

Similar to the quasi-likelihood estimating equations originally proposed by Wedderburn
(1974), the optimal choice of weights is to take Vi = Cov(Y i). Naturally, there are certain
trade-offs associated with the use of less than optimal weights. However, in general, if the
correlation among repeated measures is not too high and/or the effects of primary interest
are between-subject effects, then the efficiency of GEE estimators even under the naive
assumption of independence is remarkably high (Liang and Zeger, 1986). However, when
there is interest in the effects of non-stochastic time-varying covariates and/or the repeated
measures are highly correlated, then suboptimal choices of weights (i.e., misspecification
of the covariance) can result in a discernible loss of efficiency. Similarly, with inherently
unbalanced longitudinal data (e.g., widely varying ni), suboptimal choices of weights can
also result in loss of efficiency. In general, more efficient estimators of the marginal regression
parameters can be obtained by specifying and estimating the covariance among the repeated
measures; however, the potential gains in efficiency will depend in a subtle way on both the
magnitude of the correlation and the covariate design.

As mentioned earlier, the major impetus for the GEE approach was that it provided
a convenient alternative to maximum likelihood estimation of marginal models. For the
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case of continuous outcomes, likelihood-based methods are widely used for the analysis of
longitudinal data, for example, general linear models and linear mixed-effects models. In
general, likelihood-based estimation of marginal models for discrete longitudinal data has
proven to be very challenging, in large part because there is no simple unified joint likeli-
hood for discrete longitudinal data. Unlike the multivariate normal distribution, which is
completely specified by the first two moments of the outcome vector, for discrete longitu-
dinal data complete specification of the joint distributions requires specifying third- and
higher-order moments. Although various likelihood approaches have been proposed — for
example, models based on second- and higher-order correlations (Bahadur, 1961; Zhao and
Prentice, 1990) and models based on second- and higher-order odds ratios (McCullagh and
Nelder, 1989; Lipsitz, Laird, and Harrington, 1990; Liang, Zeger, and Qaqish, 1992; Becker
and Balagtas, 1993; Fitzmaurice, Laird, and Rotnitzky, 1993; Molenberghs and Lesaffre,
1994; Lang and Agresti, 1994; Glonek and McCullagh, 1995; Bergsma and Rudas, 2002) —
none of these likelihood-based models have proven to be of real practical use except in
relatively limited settings. As the number of repeated measures increases, the number of
parameters that need to be specified and estimated proliferates rapidly for any of these
joint distributions, and a solution to the likelihood equations quickly becomes intractable.
Thus, in general, full likelihood approaches require the specification of too many nuisance
parameters, are complicated algebraically, and ML estimation can be computationally pro-
hibitive. Furthermore, to obtain unbiased estimators of the marginal regression param-
eters, the full joint distribution of the data must, in general, be correctly specified. In
contrast, with GEE methods, only the first moment needs to be correctly specified in or-
der to obtain unbiased estimators; moreover, the GEE approach is not computationally
demanding.

We note that Heagerty (1999) and Heagerty and Zeger (2000) have recently developed a
likelihood-based approach that combines the versatility of GLMMs for modeling the within-
subject association with a marginal regression model for the mean response. They refer to
these models as marginalized random-effects models; they are closely related to other ap-

that in the standard GLMM, the marginal means obtained by integrating over the random
effects, in general, no longer follow a generalized linear model, due to the non-linearity of the
link function typically adopted in regression models for discrete responses. In contrast, the
marginalized random-effects model is specifically formulated such that the marginal mean
follows a generalized linear model. Estimation for these marginalized random-effects models
is as computationally demanding as for GLMMs, and ML estimation is, so far, limited to
relatively low-dimensional random-effects distributions. However, these models appear to
have the potential to overcome many of the limitations of previously proposed likelihood-
based methods and to provide a likelihood-based alternative to GEE; further research is
needed.

Finally, although an appealing feature of the GEE approach is its robustness to misspec-
ification of the within-subject association, there are settings where it can be appealing to
model the covariance. To date, the implementations of GEE in standard statistical software
packages provide only very limited options for modeling the covariance. In particular, there
are few choices of models for the “working covariance” when the data are highly unbalanced
and irregularly spaced in time. This is in contrast to models for continuous responses (e.g.,
general linear models and linear mixed-effects models), where there are a broad class of mod-
els for the covariance. Future work is needed in both the formulation and implementation
of flexible models for the working covariance in GEE methods.

© 2009 by Taylor & Francis Group, LLC
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rice and Laird, 1993; Azzalini, 1994; Heagerty, 2002; see also Wang and Louis, 2003). Recall
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