Biomechanical modelling and simulation of foot and ankle

Authored by: Jason Tak-Man Cheung

Routledge Handbook of Biomechanics and Human Movement Science

Print publication date:  May  2008
Online publication date:  June  2008

Print ISBN: 9780415408813
eBook ISBN: 9780203889688
Adobe ISBN: 9781134132348


 Download Chapter



Many experimental techniques were developed to study ankle-foot biomechanics. Due to the lack of technology and invasive nature of experimental measurements, experimental studies were often restricted to study the plantar pressure and gross motion of the ankle-foot complex and the evaluation of internal bone and soft tissue movements and load distributions are rare. Many researchers have turned to the computational approach, such as the finite element (FE) method, in search of more biomechanical information. Continuous advancement in numerical techniques as well as computer technology has made the FE method a versatile and successful tool for biomechanical research due to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions in both static and dynamic analyses. Regarding the human foot and ankle, the FE approach allows the prediction of joint movement and load distribution between the foot and different supports, which offer additional information such as the internal stress and strain of the modeled structures. Although the FE method has been widely used in studying the intervertebral, shoulder, knee, and hip joints, the development of detailed FE foot model has just been sparked off in the late 1990s. In this chapter, the current establishments, limitations, and future directions of the FE modelling technique for the biomechanical research of the foot and ankle are discussed.

Search for more...
Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.