Acoustic Vibrations in Nanoparticles

Authored by: Lucien Saviot , Alain Mermet , Eugène Duval

3 Handbook of Nanophysics

Print publication date:  September  2010
Online publication date:  April  2016

Print ISBN: 9781420075441
eBook ISBN: 9781420075458
Adobe ISBN:


 Download Chapter



The purpose of this chapter is to present current experimental observations of vibrations of nanoparticles and theoretical models to describe them. Only so-called acoustic vibrations will be considered, i.e., those that are more strongly affected by reducing the size of a solid to nanometric dimensions. A good knowledge of these vibrations is required to describe various properties of nanoparticles such as their specific heat but also their optical properties where the coupling between electrons and vibrations can play a significant role. For example, vibrations are an important player in the dephasing mechanism of charged carriers, which significantly affects the performance of optoelectronic devices. The same vibrations can be used as a way to characterize nanometer-scale objects. This is the nanoscale equivalent of hitting an object in everyday life and listening to the sound it makes in order to figure out what it is made of. For example, it is very easy to recognize whether a bottle is full or empty in this way, or even to know what a wall is made of depending on whether it sounds hollow or not. The very same result could be obtained for a metallic core–shell nanoparticle where the vibrations were found to “sound hollow” when “hitting” the shell leading to an original characterization of the interface between the core and the shell (Portalès et al. 2002). Therefore, these vibrations can be used to characterize nanoparticles but their knowledge is also required to design efficient devices.

Search for more...
Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.