One-Dimensional Metal Oxide Nanostructures

Authored by: Binni Varghese , Chorng Haur Sow , Chwee Teck Lim

Handbook of Nanophysics

Print publication date:  September  2010
Online publication date:  September  2010

Print ISBN: 9781420075427
eBook ISBN: 9781420075434
Adobe ISBN:

10.1201/9781420075434-21

 Download Chapter

 

Abstract

Metal oxides have numerous technological applications and provide an excellent platform to study various fundamental physical processes and phenomena existing in the material systems. Metal oxides crystallize in a multitude of crystal structures and exhibit diverse properties. For example, several metal oxides have the ability to undergo reversible surface oxidation and reduction processes due to the adsorption of certain specific gases (Henrich and Cox 1994). The adsorption of gas molecules results in band bending at the surface and effectively modifies the surface conductivity. Such a change in the conductivity due to gas adsorption is readily detectable in most of the metal oxides, including SnO2, In2O3, and ZnO. Deviations in the properties of metal oxides due to the adsorption of specific gases render them as potential gas sensors. Transition metal oxides, in particular, are attractive for their range of properties (Rao 1999). This is partly due to the partially filled d-orbital and the mixed valency of the constituent transition metal atoms and the defect-induced self-doping capability. Transition metal oxides are potentially useful in a variety of applications including as a catalysis in the petroleum industry, magnetic data storage in information technology, and gas sensing.

 Cite
Search for more...
Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.