Spinel Oxide Nanotubes and Nanowires

Authored by: Hong Jin Fan

Handbook of Nanophysics

Print publication date:  September  2010
Online publication date:  September  2010

Print ISBN: 9781420075427
eBook ISBN: 9781420075434
Adobe ISBN:

10.1201/9781420075434-16

 Download Chapter

 

Abstract

Spinel oxides have been one of the most important oxides in material science. In the form of ceramics, spinels have applications such as gas sensors, pigment materials, phosphors, catalysts, battery electrodes, infrared windows, and transparent electric conductors. However, ceramics are made up of highly compressed grain particles whose sizes range from nano- to micrometers. With nanotechnology, it is possible to make nanoparticles with more uniform sizes and finer grain structures. If traditional ceramic spinels are substituted with such nanostructured spinel nanoparticles, it is expected that some of the application performance can be enhanced. Driven by this, the preparation and characterization of nanoscale spinel oxides, in the form of nanoparticles, nanotubes, and nanowires (dimensions below 100 nm), have been recently receiving much attention (Song and Zhang 2004, Zeng et al. 2004a,b, Wang et al. 2005: 2928, Tirosh et al. 2006). Because of a large surface-to-volume ratio and symmetry breaking on the surface, nanoscale spinel oxides have shown physical properties different from their bulk counterparts. This chapter discusses only quasi one-dimensional (1D) nanostructures (e.g., tubes and wires).

 Cite
Search for more...
Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.