Nanothermodynamics

Authored by: Vladimir García-Morales , Javier Cervera , José A. Manzanares

1 Handbook of Nanophysics

Print publication date:  September  2010
Online publication date:  September  2010

Print ISBN: 9781420075403
eBook ISBN: 9781420075410
Adobe ISBN:

10.1201/9781420075410-19

 Download Chapter

 

Abstract

Progress in the synthesis of nanoscale objects has led to the appearance of scale-related properties not seen or different from those found in microscopic/macroscopic systems. For instance, monolayer-protected Au nanoparticles with average diameter of 1.9 nm have been reported to show ferromagnetism while bulk Au is diamagnetic (Hasegawa 2007). Nanotechnology brings the opportunity of tailoring systems to specific needs, significantly modifying the physicochemical properties of a material by controlling its size at the nanoscale. Size effects can be of different types. Smooth size effects can be described in terms of a size parameter such that we recover the bulk behavior when this parameter is large. The physicochemical properties then follow relatively simple scaling laws, such as a power-law dependence, that yield a monotonous variation with size. Specific size effects, on the contrary, are not amenable to size scaling because the variation of the relevant property with the size is irregular or nonmonotonic. They are characteristic of small clusters. Finally, some properties are unique for finite systems and do not have an analog in the behavior of the corresponding bulk matter (Jortner and Rao 2002, Berry 2007).

 Cite
Search for more...
Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.