Within this Book Full site

Metrics

Views
1.1k+

Filter my results

ISBN of the Book

Material or Process Book or Chapter Title Author or Editor Publication dates

Handbook of Integral Equations

Authored by: Andrei D. Polyanin , Alexander V. Manzhirov

Print publication date:  February  2008
Online publication date:  February  2008

Print ISBN: 9781584885078
eBook ISBN: 9780203881057
Adobe ISBN:

10.1201/9781420010558
 Cite  Marc Record

Book description

This handbook contains more than 2,500 integral equations with solutions, as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, Wiener–Hopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes chapters on mixed multi-dimensional equations and methods of integral equations for ODEs and PDEs, providing more than 400 equations with exact solutions. With many examples added for illustrative purposes, it covers Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

Table of contents

Chapter  1:  Linear Equations of the First Kind with Variable Limit of Integration Download PDF
Chapter  2:  Linear Equations of the Second Kind with Variable Limit of Integration Download PDF
Chapter  3:  Linear Equations of the First Kind with Constant Limits of Integration Download PDF
Chapter  4:  Linear Equations of the Second Kind with Constant Limits of Integration Download PDF
Chapter  5:  Nonlinear Equations of the First Kind with Variable Limit of Integration Download PDF
Chapter  6:  Nonlinear Equations of the Second Kind with Variable Limit of Integration Download PDF
Chapter  7:  Nonlinear Equations of the First Kind with Constant Limits of Integration Download PDF
Chapter  8:  Nonlinear Equations of the Second Kind with Constant Limits of Integration Download PDF
Chapter  9:  Main Definitions and Formulas. Integral Transforms Download PDF
Chapter  10:  Methods for Solving Linear Equations of the Form ∫ a x K ( x , t ) y ( t ) d t = f ( x )  Download PDF
Chapter  11:  Methods for Solving Linear Equations of the Form y ( x ) − ∫ a x K ( x ,   t ) y ( t )   d t = f ( x )  Download PDF
Chapter  12:  Methods for Solving Linear Equations of the Form ∫ a b K ( x , t ) y ( t ) d t = f ( x )  Download PDF
Chapter  13:  Methods for Solving Linear Equations of the Form y ( x ) − ∫ a b K ( x , t ) y ( t ) d t = f ( x )  Download PDF
Chapter  14:  Methods for Solving Singular Integral Equations of the First Kind Download PDF
Chapter  15:  Methods for Solving Complete Singular Integral Equations Download PDF
Chapter  16:  Methods for Solving Nonlinear Integral Equations Download PDF
Chapter  17:  Methods for Solving Multidimensional Mixed Integral Equations Download PDF
Chapter  18:  Application of Integral Equations for the Investigation of Differential Equations Download PDF
Chapter  1:  Elementary Functions and Their Properties Download PDF
Chapter  2:  Finite Sums and Infinite Series Download PDF
Chapter  3:  Tables of Indefinite Integrals Download PDF
Chapter  4:  Tables of Definite Integrals Download PDF
Chapter  5:  Tables of Laplace Transforms Download PDF
Chapter  6:  Tables of Inverse Laplace Transforms Download PDF
Chapter  7:  Tables of Fourier Cosine Transforms Download PDF
Chapter  8:  Tables of Fourier Sine Transforms Download PDF
Chapter  9:  Tables of Mellin Transforms Download PDF
Chapter  10:  Tables of Inverse Mellin Transforms Download PDF
Chapter  11:  Special Functions and Their Properties Download PDF
Chapter  12:  Some Notions of Functional Analysis Download PDF
Supplement_11 Download PDF
Supplement_2 Download PDF
References Download PDF
Supplement_6 Download PDF
prelims Download PDF
Supplement_8 Download PDF
Supplement_4 Download PDF
Supplement_10 Download PDF
Supplement_1 Download PDF
Supplement_9 Download PDF
Supplement_5 Download PDF
Supplement_7 Download PDF
Supplement_3 Download PDF
Supplement_12 Download PDF
Search for more...

Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.