1.1
A balanced incomplete block design (BIBD) is a pair ( V , B ) where V is a v-set and B is a collection of b k-subsets of V (blocks) such that each element of V is contained in exactly r blocks and any 2-subset of V is contained in exactly λ blocks. The numbers v, b, r, k, and λ are parameters of the BIBD.
1.1
A balanced incomplete block design (BIBD) is a pair where V is a v-set and is a collection of b k-subsets of V (blocks) such that each element of V is contained in exactly r blocks and any 2-subset of V is contained in exactly λ blocks. The numbers v, b, r, k, and λ are parameters of the BIBD.
1.2 Proposition Trivial necessary conditions for the existence of a BIBD(v, b, r, k, λ) are (1) vr = bk, and (2) r(k − 1) = λ(v − 1). Parameter sets that satisfy (1) and (2) are admissible.
1.3
A BIBD is a subdesign of a BIBD if X ⊆ V and . The subdesign is proper if X ⊂ V.
1.4 Proposition If a (v, k, λ) design has a proper (w, k, λ) subdesign, then .
1.5 Remark The three parameters v, k, and λ determine the remaining two as and . Hence one often writes (v, k, λ) design to denote a BIBD(v, b, r, k, λ). The notation 2-(v, k, λ) design is also used, because BIBDs are t-designs with t = 2. See §II.4. When λ = 1, the notation S(2, k, v) is also employed in the literature, because such BIBDs are Steiner systems. See §II.5. The notations S λ(2, k, v) or (v, k, λ) BIBD for a (v, k, λ) design are also in common use.
1.6
A BIBD with parameters v, b, r, k, λ is
complete |
or full if it is simple and contains blocks. |
decomposable |
if can be partitioned into two nonempty collections and so that is a (v, k, λ i ) design for i = 1, 2. |
derived |
(from a symmetric design) if for some , the collection of blocks . |
Hadamard |
if v = 4n − 1, k = 2n − 1, and λ = n − 1 for some integer n ≥ 2. See §V.1. |
m-multiple |
if are the parameters of a BIBD. |
nontrivial |
if 3 ≤ k < v. |
quasi-symmetric |
if every two distinct blocks intersect in either μ 1 or μ 2 elements; the block intersection graph is strongly regular. See §VI.48 and §VI.11. |
residual |
(of a symmetric design) if for some , the collection of blocks . |
resolvable |
(an RBIBD) if there exists a partition R of its set of blocks B into parallel classes, each of which in turn partitions the set V; R is a resolution. See §II.7 |
simple |
if it has no repeated blocks. |
symmetric |
if v = b, or equivalently k = r. See §II.6. |
1.7
The incidence matrix of a BIBD with parameters v, b, r, k, λ is a v × b matrix A = (a ij ), in which a ij = 1 when the ith element of V occurs in the jth block of , and a ij = 0 otherwise.
1.8 Theorem If A is the incidence matrix of a (v, k, λ)-design, then AA T = (r − λ)I + λJ and , where I is a v × v identity matrix, J is a v × v all ones matrix, and is a v × b all ones matrix. Moreover, any matrix A satisfying these conditions also satisfies λ(v − 1) = r(k − 1) and bk = vr; when k < v, it is the incidence matrix of a (v, k, λ) design. (See §VII.7.3)
1.9 Theorem (Fisher’s inequality) If a BIBD(v, b, r, k, λ) exists with 2 ≤ k < v, then b ≥ v.
1.10 Proposition An additional trivial necessary condition for the existence of an RBIBD is (3) k|v. A nontrivial condition is that b ≥ v + r − 1, a result that extends the inequality in Theorem 1.9. See §II.7.3.
1.11
Two BIBDs (V 1, B 1), (V 2, B 2) are isomorphic if there exists a bijection α : V 1 → V 2 such that B 1 α = B 2. Isomorphism of resolutions of BIBDs is defined similarly. An automorphism is an isomorphism of a design with itself. The set of all automorphisms of a design forms a group, the (full) automorphism group. An automorphism group of the design is any subgroup of the full automorphism group.
1.12 Remark If is a BIBD(v, b, r, k, λ) with automorphism group G, the action of G partitions into classes (orbits). A set of orbit representatives is a set of starter blocks or base blocks. Together with the group G, a set of base blocks can be used to define a design.
1.13
A BIBD with parameters v, b, r, k, λ and automorphism group G is
cyclic |
if G contains a cycle of length v. |
regular |
if G contains a subgroup G′ of order v that acts transitively on the elements. |
k-rotational |
if some automorphism has one fixed point and k cycles each of length (v − 1)/k. |
transitive |
if for any two elements x and y, there is an automorphism mapping x to y. |
1.14
The complement of a design is where .
1.15 Proposition The complement of a design with parameters (v, b, r, k, λ) is a design with parameters (v, b, b −r, v − k, b − 2r + λ).
1.16 Remarks
1.17 Remark To conserve space, designs are displayed in a k × b array in which each column contains the elements (taken from the decimal digits and roman letters) forming a block. For a discussion of how to find the automorphism group of each of these designs, see Remarks VII.6.107.
1.18 Example The unique (6, 3, 2) design and the unique (7, 3, 1) design (see also Example II.6.4).
0000011122 |
0001123 |
1123423433 |
1242534 |
2345554545 |
3654656 |
1.19 Table The four nonisomorphic (7, 3, 2) designs.
1: |
00000011112222 |
2: |
00000011112222 |
11335533443344 |
11335533443344 |
||
22446655666655 |
22446656565656 |
||
3: |
00000011112222 |
4: |
00000011112223 |
11334533453344 |
11234523453344 |
||
22456646565656 |
23456664565656 |
1.20 Table The 10 nonisomorphic (7, 3, 3) designs.
1: |
000000000111111222222 |
2: |
000000000111111222222 |
111333555333444333444 |
111333555333444333444 |
||
222444666555666666555 |
222444666556566566556 |
||
3: |
000000000111111222222 |
4: |
000000000111111222222 |
111333455333445333444 |
111333455333445333444 |
||
222445666456566566556 |
222445666466556556566 |
||
5: |
000000000111111222222 |
6: |
000000000111111222223 |
111333445333445333445 |
111233455233445333444 |
||
222456566456566456566 |
223445666546566566565 |
||
7: |
000000000111111222223 |
8: |
000000000111111222223 |
111233455233445333444 |
111233445233455333444 |
||
223445666645566566556 |
223455666644566566556 |
||
9: |
000000000111111222223 |
10: |
000000000111111222233 |
111233445233445333454 |
111223445223345334544 |
||
223456566546566456665 |
234356566465656456656 |
1.21 Table The four nonisomorphic (8, 4, 3) designs.
1: |
00000001111222 |
2: |
00000001111222 |
11123342334334 |
11123342334334 |
||
22554666455455 |
22554666455455 |
||
34675777677766 |
34675777767676 |
||
3: |
00000001111222 |
4: |
00000001111224 |
11123342334334 |
11122332233335 |
||
22554566465455 |
24645454545466 |
||
34677677577676 |
35767767667577 |
1.22 Example The unique (9, 3, 1) design.
000011122236 |
134534534547 |
268787676858 |
1.23 Table The 36 nonisomorphic (9, 3, 2) designs.
1: |
000000001111112222223344 |
2: |
000000001111112222223344 |
113355773344663344556655 |
113355773344663344556655 |
||
224466885577888866777788 |
224466885578787866787878 |
||
3: |
000000001111112222223344 |
4: |
000000001111112222223344 |
113355673344673344556655 |
113355773344663344555656 |
||
224467885568787867687878 |
224466885758786768788877 |
||
5: |
000000001111112222223344 |
6: |
000000001111112222223344 |
113355773344663344555656 |
113355673344673344555656 |
||
224466885758786867787887 |
224467885657887868678787 |
||
7: |
000000001111112222223344 |
8: |
000000001111112222223344 |
113355673344673344555656 |
113355673344673344555656 |
||
224467885658787867687887 |
224467885658787867688778 |
||
9: |
000000001111112222223344 |
10: |
000000001111112222223344 |
113355673344663344555756 |
113355773344563344565656 |
||
224467885858776767886878 |
224466885768786857877887 |
||
11: |
000000001111112222223344 |
12: |
000000001111112222223344 |
113355673344573344565656 |
113355673344573344565656 |
||
224467885678687856788787 |
224467885678687856877887 |
||
13: |
000000001111112222223344 |
14: |
000000001111112222223344 |
113355673344573344565656 |
113355673344573344565656 |
||
224467885867686758788787 |
224467885867686758877887 |
||
15: |
000000001111112222223344 |
16: |
000000001111112222223344 |
113346673345573344555656 |
113345673345673344556655 |
||
224557884676887868677887 |
224567884586787867687878 |
||
17: |
000000001111112222223344 |
18: |
000000001111112222223344 |
113345673345673344555656 |
113345673345663344555756 |
||
224567884856786778687887 |
224567884857786778686887 |
||
19: |
000000001111112222223344 |
20: |
000000001111112222223344 |
113345673345663344555657 |
113345673345563344566755 |
||
224567884857787867686788 |
224567884876785678877868 |
||
21: |
000000001111112222223344 |
22: |
000000001111112222223344 |
113345673345563344576655 |
113345673345563344575656 |
||
224567884876785867687788 |
224567884786876857687887 |
||
23: |
000000001111112222223344 |
24: |
000000001111112222233333 |
113345673345563344565756 |
112445672445674455644556 |
||
224567884876786758876887 |
233567883567887868778687 |
||
25: |
000000001111112222233333 |
26: |
000000001111112222233334 |
112445672445674455644556 |
112445672345673455644565 |
||
233567883568787867878687 |
233567884567888768778678 |
||
27: |
000000001111112222233334 |
28: |
000000001111112222233334 |
112445672345673455644565 |
112445672345673455644565 |
||
233567884568787868778687 |
233567884568788767878678 |
||
29: |
000000001111112222233334 |
30: |
000000001111112222233334 |
112445672345673455644565 |
112445672345673455644565 |
||
233567884576886878778876 |
233567884576888678778678 |
||
31: |
000000001111112222233334 |
32: |
000000001111112222233334 |
112445672345673455644565 |
112445672345673455644565 |
||
233567884586787768868877 |
233567884586788768767788 |
||
33: |
000000001111112222233344 |
34: |
000000001111112222233344 |
112355672344673345645655 |
112355672344673345645556 |
||
234467885568787868776878 |
234467885658786778887867 |
||
35: |
000000001111112222233344 |
36: |
000000001111112222233344 |
112345672345673345645655 |
112345672345673345645655 |
||
234567885468787876886778 |
234567885468787886776878 |
1.24 Table The 11 nonisomorphic (9, 4, 3) designs.
1: |
000000001111122223 |
2: |
000000001111122223 |
111233562334433444 |
111233562334433444 |
||
225544777556666555 |
225544777565656565 |
||
346678888787878786 |
346678888788787786 |
||
3: |
000000001111122223 |
4: |
000000001111122223 |
111233462334533444 |
111233462334533444 |
||
225545777456666555 |
225545777456666555 |
||
346768888788778687 |
346768888877878687 |
||
5: |
000000001111122223 |
6: |
000000001111122223 |
111233462334533444 |
111233462334533444 |
||
225545677457666555 |
225545677457666555 |
||
346778888688778687 |
346788788678878687 |
||
7: |
000000001111122223 |
8: |
000000001111122223 |
111233462334533444 |
111233462334533444 |
||
225545777465656565 |
225545676465757565 |
||
346768888788787687 |
346778888877868876 |
||
9: |
000000001111122223 |
10: |
000000001111122223 |
111233462334533444 |
111233452334533444 |
||
225545676465757565 |
225546677467656565 |
||
346788788778868786 |
346787888578888677 |
||
11: |
000000001111122234 | ||
111223352233533446 | |||
246454674745656557 | |||
357867886887887768 |
1.25 Table The three nonisomorphic (10, 4, 2) designs.
1: |
000000111122233 |
2: |
000000111122233 |
3: |
000000111122233 |
112356234534544 |
112356234534544 |
112345234534545 |
|||
244778767658656 |
244778767658656 |
246867867647667 |
|||
356899899899787 |
356899998889797 |
357989979858998 |
1.26 Table The unique (11, 5, 2) design and the unique (13, 4, 1) design.
00000111223 |
0000111223345 |
11234236354 |
1246257364789 |
24567457465 |
385a46b57689a |
35889898677 |
9c7ba8cb9cabc |
769aaaa99a8 |
1.27 Table The two nonisomorphic (13, 3, 1) designs.
1: |
00000011111222223334445556 |
2: |
00000011111222223334445556 |
13579b3469a3467867868a7897 |
13579b3469a3467867868a7897 |
||
2468ac578bc95acbbacc9bbac9 |
2468ac578bc95abcbcac9babc9 |
1.28 Table The 80 nonisomorphic (15, 3, 1) designs.
1: |
00000001111112222223333444455556666 |
2: |
00000001111112222223333444455556666 |
13579bd3478bc3478bc789a789a789a789a |
13579bd3478bc3478bc789a789a789a789a |
||
2468ace569ade65a9edbcdecbeddebcedcb |
2468ace569ade65a9edbcdecbededcbdebc |
||
3: |
00000001111112222223333444455556666 |
4: |
00000001111112222223333444455556666 |
13579bd3478bc3478bc789a789a789a789a |
13579bd3478bc3478bc789a789a789a789a |
||
2468ace569ade65a9edbcdedebcedcbcbed |
2468ace569ade65a9edbcdedbecedcbcebd |
||
5: |
00000001111112222223333444455556666 |
6: |
00000001111112222223333444455556666 |
13579bd3478bc3478bc789a789a789a789a |
13579bd3478bc3478bc789a789a789a789a |
||
2468ace569ade65a9edbceddecbcbdeedbc |
2468ace569ade65a9edbceddecbcdbeebdc |
||
7: |
00000001111112222223333444455556666 |
8: |
00000001111112222223333444455556666 |
13579bd3478bc3478bc789a789a789a789a |
13579bd3478bc34789c78ab789a789a789a |
||
2468ace569ade65a9edbdececbdcedbdbce |
2468ace569ade65abedc9deedcbdebcbcde |
||
9: |
00000001111112222223333444455556666 |
10: |
00000001111112222223333444455556666 |
13579bd3478bc34789c78ab789a789a789a |
13579bd3478bc34789c78ab789a789a789a |
||
2468ace569ade65abedc9deedbcdecbbcde |
2468ace569ade65abedc9deedcbdcbebedc |
||
11: |
00000001111112222223333444455556666 |
12: |
00000001111112222223333444455556666 |
13579bd3478bc34789c789a789a78ab789a |
13579bd3478bc34789c789a789a789a78ab |
||
2468ace569ade65abedcdbeecdbd9cebecd |
2468ace569ade65abedcdbeecdbbecdd9ce |
||
13: |
00000001111112222223333444455556666 |
14: |
00000001111112222223333444455556666 |
13579bd3478bc34789c789a789a78ab789a |
13579bd3478bc34789c789a78ab789a789a |
||
2468ace569ade65abedcebdedcbd9cebcde |
2468ace569ade65abedcebdd9ceedcbbcde |
||
15: |
00000001111112222223333444455556666 |
16: |
00000001111112222223333444455556666 |
13579bd3478bc34789a78ac789a789b789a |
13579bd3478bc34789a789a78bc789a789a |
||
2468ace569ade65bcdee9bddbecadcecebd |
2468ace569ade65bcdeedcba9eddebccbed |
||
17: |
00000001111112222223333444455556666 |
18: |
00000001111112222223333444455556666 |
13579bd3478bc34789a789a789c78ab789a |
13579bd3478bc34789a78ac789b789a789a |
||
2468ace569ade65bcdeedcbabedd9cecebd |
2468ace569ade65bcede9bdadcedebccbde |
||
19: |
00000001111112222223333444455556666 |
20: |
00000001111112222223333444455556666 |
13579bd3478bc34789a789a78ab789c789a |
13579bd3478bc34789a78ac789b789a789a |
||
2468ace569ade65bdceebdcc9deaebddceb |
2468ace569ade65bdece9bdacdedbcecebd |
||
21: |
00000001111112222223333444455556666 |
22: |
00000001111112222223333444455556666 |
13579bd3478ac34789b789a789a78ab789c |
13579bd3478ac34789b789a789c789a78ab |
||
2468ace569bde65acedbdcecedbd9ceeabd |
2468ace569bde65acedbdceeabdcedbd9ce |
||
23: |
00000001111112222223333444455566667 |
24: |
00000001111112222223333444455566667 |
13579bd3478bc34589c789a58ab789789aa |
13579bd3478bc34589c789a589a78978aba |
||
2468ace569ade67abedcdbed9cebececdbd |
2468ace569ade67abedcdbebecdecdd9ceb |
||
25: |
00000001111112222223333444455566667 |
26: |
00000001111112222223333444455566667 |
13579bd3478bc34589c789a589a78978aba |
13579bd3478bc3458ac789a589a789789ab |
||
2468ace569ade67abedcedbecbdbdcd9cee |
2468ace569ade67b9edcbededbcacddecbe |
||
27: |
00000001111112222223333444455566667 |
28: |
00000001111112222223333444455566667 |
13579bd3478bc34589a78ab589c789789aa |
13579bd3478bc34589a78ab589c789789aa |
||
2468ace569ade67bcded9ceaebdcdeebcdb |
2468ace569ade67bcedd9ceaebdedccbdeb |
||
29: |
00000001111112222223333444455566667 |
30: |
00000001111112222223333444455566667 |
13579bd3478bc34589a789a58bc789789aa |
13579bd3478bc34589a78ab589c789789aa |
||
2468ace569ade67bcedebdca9eddeccdbeb |
2468ace569ade67bdced9ceabedcedecbdb |
||
31: |
00000001111112222223333444455566667 |
32: |
00000001111112222223333444455566667 |
13579bd3478bc34589a789a58bc789789aa |
13579bd3478bc34589a78ab589c789789aa |
||
2468ace569ade67bdcedbeca9edcedecbdb |
2468ace569ade67bdcec9deaebddceebdcb |
||
33: |
00000001111112222223333444455566667 |
34: |
00000001111112222223333444455566667 |
13579bd3478bc34589a78ab589c789789aa |
13579bd3478bc34589a789a589c78978baa |
||
2468ace569ade67bdecc9deaebdecddbceb |
2468ace569ade67bdecdbceaebdecdc9edb |
||
35: |
00000001111112222223333444455566678 |
36: |
00000001111112222223333444455566678 |
13579bd3478bc34569a689a579a78a789bc |
13579bd3478bc34569a689a579a78a789bc |
||
2468ace569ade78bcdedbecedcbc9daebed |
2468ace569ade78bceddbceecdbd9caebed |
||
37: |
00000001111112222223333444455566678 |
38: |
00000001111112222223333444455566678 |
13579bd3478bc34569a68ab579c78978aa9 |
13579bd3478bc34569a68ab579a78978ac9 |
||
2468ace569ade78bced9dceaebdceddbebc |
2468ace569ade78bdce9cdecedbadebecdb |
||
39: |
00000001111112222223333444455566678 |
40: |
00000001111112222223333444455566678 |
13579bd3478bc34569a68ab579c78978aa9 |
13579bd3478bc34569a689a579a78a789bc |
||
2468ace569ade78bdce9dceabedecdcebdb |
2468ace569ade78bdcecbedecdbd9caebed |
||
41: |
00000001111112222223333444455566678 |
42: |
00000001111112222223333444455566678 |
13579bd3478bc34569a689c57ab78a789a9 |
13579bd3478bc34569a68ab579c78978aa9 |
||
2468ace569ade78bdceabed9dceecdcebbd |
2468ace569ade78bdec9cdeaebddeccbebd |
||
43: |
00000001111112222223333444455566678 |
44: |
00000001111112222223333444455566678 |
13579bd3478bc34569a68ac579b78978aa9 |
13579bd3478bc34569a689a579a78a789bc |
||
2468ace569ade78bdec9ebdacdeedcbcedb |
2468ace569ade78bdeccbdeedcbc9daebed |
||
45: |
00000001111112222223333444455566678 |
46: |
00000001111112222223333444455566678 |
13579bd3478bc34569a68ac579a78978ab9 |
13579bd3478bc34569a68ab579c78978aa9 |
||
2468ace569ade78becd9bededbcacdcdbee |
2468ace569ade78becd9dceabedceddcbeb |
||
47: |
00000001111112222223333444455566678 |
48: |
00000001111112222223333444455566678 |
13579bd3478bc34569a68ab579c78978aa9 |
13579bd3478bc34568a69ab578c78979aa9 |
||
2468ace569ade78bedc9cdeabeddeccdbeb |
2468ace569ade79becd8dceabedcdedcbeb |
||
49: |
00000001111112222223333444455566679 |
50: |
00000001111112222223333444455566678 |
13579bd3478bc34568a689a578a78978abc |
13579bd3478bc34568a69ac578a78979ab9 |
||
2468ace569ade79becddebccdbeadec9bed |
2468ace569ade79becd8bededbcadccdbee |
||
51: |
00000001111112222223333444455566678 |
52: |
00000001111112222223333444455566678 |
13579bd3478bc34568968ab579c79a78aa9 |
13579bd3478bc345689689a579c79a78aab |
||
2468ace569ade7abecd9dce8ebddcecbdbe |
2468ace569ade7abecdcdeb8ebddceb9dce |
||
53: |
00000001111112222223333444455566678 |
54: |
00000001111112222223333444455566679 |
13579bd3478bc345689689a579c79a78aab |
13579bd3478bc345689689a578c78a78aab |
||
2468ace569ade7abecdbdec8ebddcec9dbe |
2468ace569ade7abecdbecd9ebdcded9cbe |
||
55: |
00000001111112222223333444455566678 |
56: |
00000001111112222223333444455566678 |
13579bd3478bc34568969ab578c78a79aa9 |
13579bd3478bc345689689a579c79a78aab |
||
2468ace569ade7abecd8cde9ebdcdedbcbe |
2468ace569ade7abedcdceb8ebdcdeb9cde |
||
57: |
00000001111112222223333444455566678 |
58: |
00000001111112222223333444455566678 |
13579bd3478bc34568968ab579c79a78aa9 |
13579bd3478bc345689689a579c79a78aab |
||
2468ace569ade7abedc9cde8ebdcdedbcbe |
2468ace569ade7abedcbced8ebdcded9cbe |
||
59: |
0000000111111222222333344445556667a |
60: |
0000000111111222222333344445556667a |
13579bd3478bc345689689a578a789789cb |
13579bd3478bc34568968a9578a789789cb |
||
2468ace569ade7ebacdcbeddb9caecedbde |
2468ace569ade7ebacddecbcb9dadeebcde |
||
61: |
00000001111112222223333444455556666 |
62: |
00000001111112222223333444455566667 |
13579bd3478ac34789b789c789a78ab789a |
13579bd3478ac34589b78ab589a789789ca |
||
2468ace569bde65aecdbaedecdbd9cecdbe |
2468ace569bde67adcec9edbedcdceeabdb |
||
63: |
00000001111112222223333444455566667 |
64: |
00000001111112222223333444455566667 |
13579bd3478ac34589b78ab589a789789ca |
13579bd3478ac34589a789a589b78b789ca |
||
2468ace569bde67aecdd9cebcdecdeeabdb |
2468ace569bde67cdbeecdbaecdd9ebaedc |
||
65: |
00000001111112222223333444455566678 |
66: |
00000001111112222223333444455566678 |
13579bd3478ac34569b68ac579a789789ba |
13579bd3478ac34568968ac579a79b789ba |
||
2468ace569bde78dacee9bdbedcacecdbde |
2468ace569bde7bdacee9bd8edcacecdbde |
||
67: |
00000001111112222223333444455566679 |
68: |
00000001111112222223333444455566678 |
13579bd3478ac34568a68ac578b789789ab |
13579bd3478ac34569b68ac579a789789ba |
||
2468ace569bde79cbdee9bdaecdbeddacce |
2468ace569bde78adcee9bdbedccdeacbde |
||
69: |
00000001111112222223333444455566679 |
70: |
0000000111111222222333344445556667a |
13579bd3478ac3456a868ac578b789789ab |
13579bd3478ac34568968ab5789789789cb |
||
2468ace569bde79bcede9bdaecddecbadce |
2468ace569bde7dbaece9cdceabadebcdde |
||
71: |
0000000111111222222333344445556667a |
72: |
0000000111111222222333344445556667a |
13579bd3478ac34568968ab5789789789cb |
13579bd3478ac34568968ab5789789789cb |
||
2468ace569bde7cabdee9cddeabbecacdde |
2468ace569bde7dcbaee9cdaecbbedadcde |
||
73: |
00000001111112222223333444455566679 |
74: |
0000000111111222222333344445556667a |
13579bd3478ac34568a689a578b78c789ab |
13579bd3478ac345698689a578b789789cb |
||
2468ace569bde7c9bdeecdbae9dbeddacce |
2468ace569bde7abdecedbcce9daedbacde |
||
75: |
0000000111111222222333344445556667a |
76: |
00000001111112222223333444455566678 |
13579bd3478ac345689689a578b789789cb |
13579bd3478ac34569b68ab578978979aac |
||
2468ace569bde7cdbaeedbcae9dbecacdde |
2468ace569bde7da8cee9cdcbaedebcdbed |
||
77: |
00000001111112222223333444455566678 |
78: |
00000001111112222223333444455566678 |
13579bd3478ac34569a68ab578979b789ac |
13579bd3478ac34569b689c578b78a79aa9 |
||
2468ace569bde7d8cebe9cdacebdcebaded |
2468ace569bde7ac8edeabd9cdedebbdcec |
||
79: |
00000001111112222223333444455566678 |
80: |
00000001111112222223333444455566678 |
13579bd3478ac34568b689c57ab79a789a9 |
13579bd3469ac34578b678a58ab78979c9a |
||
2468ace569bde79ecadaebd8dcecdbbdeec |
2468ace578bde96aecdbcded9cebecaeddb |
1.29 Table Properties of the 80 STS(15)s ((15,3,1) BIBDs). |G| is the order of the automorphism group. CI is the chromatic index, the minimum number of colors with which the blocks can be colored so that no two intersecting blocks receive the same color; when CI = 7, the design is resolvable. PC is the number of parallel classes. Sub is the number of (7,3,1)-subdesigns, and Pa is the number of Pasch configurations (four triples on six points).
# |
|G| |
CI |
PC |
Sub |
Pa |
# |
|G| |
CI |
PC |
Sub |
Pa |
# |
|G| |
CI |
PC |
Sub |
Pa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 |
20160 |
7 |
56 |
15 |
105 |
2 |
192 |
8 |
24 |
7 |
73 |
3 |
96 |
9 |
8 |
3 |
57 |
4 |
8 |
9 |
8 |
3 |
49 |
5 |
32 |
8 |
16 |
3 |
49 |
6 |
24 |
8 |
12 |
3 |
37 |
7 |
288 |
7 |
32 |
3 |
33 |
8 |
4 |
9 |
4 |
1 |
37 |
9 |
2 |
9 |
2 |
1 |
31 |
10 |
2 |
9 |
6 |
1 |
31 |
11 |
2 |
9 |
6 |
1 |
23 |
12 |
3 |
9 |
1 |
1 |
32 |
13 |
8 |
9 |
4 |
1 |
33 |
14 |
12 |
9 |
0 |
1 |
37 |
15 |
4 |
8 |
8 |
1 |
25 |
16 |
168 |
9 |
0 |
1 |
49 |
17 |
24 |
8 |
12 |
1 |
25 |
18 |
4 |
9 |
4 |
1 |
25 |
19 |
12 |
7 |
16 |
1 |
17 |
20 |
3 |
9 |
1 |
1 |
20 |
21 |
3 |
9 |
1 |
1 |
20 |
22 |
3 |
8 |
4 |
1 |
17 |
23 |
1 |
9 |
1 |
0 |
18 |
24 |
1 |
9 |
0 |
0 |
19 |
25 |
1 |
9 |
1 |
0 |
20 |
26 |
1 |
9 |
0 |
0 |
23 |
27 |
1 |
9 |
3 |
0 |
14 |
28 |
1 |
9 |
2 |
0 |
15 |
29 |
3 |
9 |
0 |
0 |
19 |
30 |
2 |
9 |
3 |
0 |
14 |
31 |
4 |
9 |
5 |
0 |
18 |
32 |
1 |
9 |
2 |
0 |
13 |
33 |
1 |
9 |
1 |
0 |
12 |
34 |
1 |
9 |
1 |
0 |
12 |
35 |
3 |
9 |
0 |
0 |
13 |
36 |
4 |
9 |
1 |
0 |
10 |
37 |
12 |
9 |
5 |
0 |
6 |
38 |
1 |
9 |
4 |
0 |
9 |
39 |
1 |
9 |
1 |
0 |
12 |
40 |
1 |
9 |
0 |
0 |
13 |
41 |
1 |
9 |
1 |
0 |
12 |
42 |
2 |
9 |
5 |
0 |
8 |
43 |
6 |
9 |
3 |
0 |
10 |
44 |
2 |
9 |
1 |
0 |
8 |
45 |
1 |
9 |
2 |
0 |
9 |
46 |
1 |
9 |
2 |
0 |
7 |
47 |
1 |
9 |
1 |
0 |
10 |
48 |
1 |
9 |
1 |
0 |
8 |
49 |
1 |
9 |
2 |
0 |
7 |
50 |
1 |
8 |
7 |
0 |
6 |
51 |
1 |
9 |
2 |
0 |
9 |
52 |
1 |
9 |
0 |
0 |
9 |
53 |
1 |
9 |
1 |
0 |
10 |
54 |
1 |
9 |
2 |
0 |
11 |
55 |
1 |
9 |
2 |
0 |
9 |
56 |
1 |
9 |
1 |
0 |
8 |
57 |
1 |
8 |
4 |
0 |
5 |
58 |
1 |
9 |
3 |
0 |
8 |
59 |
3 |
9 |
0 |
0 |
13 |
60 |
1 |
9 |
6 |
0 |
7 |
61 |
21 |
7 |
7 |
1 |
14 |
62 |
3 |
9 |
0 |
0 |
7 |
63 |
3 |
8 |
6 |
0 |
7 |
64 |
3 |
9 |
3 |
0 |
10 |
65 |
1 |
9 |
2 |
0 |
7 |
66 |
1 |
9 |
3 |
0 |
6 |
67 |
1 |
8 |
4 |
0 |
5 |
68 |
1 |
9 |
1 |
0 |
6 |
69 |
1 |
8 |
4 |
0 |
5 |
70 |
1 |
9 |
2 |
0 |
9 |
71 |
1 |
9 |
2 |
0 |
5 |
72 |
1 |
9 |
4 |
0 |
5 |
73 |
4 |
9 |
9 |
0 |
6 |
74 |
4 |
9 |
3 |
0 |
8 |
75 |
3 |
8 |
6 |
0 |
7 |
76 |
5 |
9 |
1 |
0 |
10 |
77 |
3 |
9 |
1 |
0 |
2 |
78 |
4 |
9 |
9 |
0 |
6 |
79 |
36 |
8 |
17 |
0 |
6 |
80 |
60 |
9 |
11 |
0 |
0 |
1.30 Table The five nonisomorphic (15, 7, 3) designs.
1: |
000000011112222 |
2: |
000000011112222 |
3: |
000000011112222 |
111335533443344 |
111335533443344 |
111335533443344 |
|||
222446655666655 |
222446655666655 |
222446655666655 |
|||
37b797978787878 |
37b797978787878 |
37b797978787878 |
|||
48c8a8a9a9aa9a9 |
48c8a8a9a9aa9a9 |
48c8a8a9aa99aa9 |
|||
59dbddbbccbbccb |
59dbddbbccbcbbc |
59dbddbbccbcbbc |
|||
6aeceecdeededde |
6aeceecdeeddeed |
6aeceecdedeeded |
|||
4: |
000000011112222 |
5: |
000000011112222 | ||
111335533443344 |
111335533443344 | ||||
222446655666655 |
222446656565656 | ||||
37b797879787878 |
37b797977888877 | ||||
48c8a9a8aa99aa9 |
48c8a8a9aa99aa9 | ||||
59dbdbcdbcbcbbc |
59dbddbbccbcbbc | ||||
6aecedeecdeeded |
6aeceecdedeeded |
1.31 Example The unique (16, 4, 1) design.
00000111122223333456 |
147ad456945684567897 |
258be7b8cc79a98abbac |
369cfadefefbddcfefed |
1.32 Table The three nonisomorphic (16, 6, 2) designs.
1: |
0000001111222334 |
2: |
0000001111222334 |
3: |
0000001111222334 |
1123452345345455 |
1123452345345455 |
1123452345345455 |
|||
2667896789877666 |
2667896789877666 |
2667896789877666 |
|||
37aabcdbaa998987 |
37aabcdbaa998987 |
37aabcdbaa998987 |
|||
48bddeeccbabccba |
48bddeeccbacbbca |
48bddeeccbcabbac |
|||
59ceffffedfeddef |
59ceffffedfdeedf |
59ceffffeddfeefd |
1.33 Table The six nonisomorphic (19, 9, 4) designs.
1: |
0000000001111122223 |
2: |
0000000001111122223 |
1111233562334433444 |
1111233562334433444 |
||
2225544777556666555 |
2225544777556666555 |
||
3346678888787878786 |
3346678888787878786 |
||
499acab99a9b9aa9b99 |
499acab99a9ba99ab99 |
||
5aebdcdabddcbcbccaa |
5aebdcdabcdcbcbdcaa |
||
6bfegefcdefecdfedbd |
6bfegefdcffeddeedbc |
||
7cgfhghfehgghfgfege |
7cgfhghefhgggehfegf |
||
8dhiiiihgiihighifih |
8dhiiiihgiihhiigfih |
||
3: |
0000000001111122223 |
4: |
0000000001111122223 |
1111233562334433444 |
1111233562334433444 |
||
2225544777565656565 |
2225544777565656565 |
||
3346678888788787786 |
3346678888788787786 |
||
499acab99a99abba999 |
499acab99a9ab99ba99 |
||
5aebdcdabbcdcccdbaa |
5aebdcdabdbccccdbaa |
||
6bfegefdcgfeddeedcb |
6bfegefdcegfddeecbd |
||
7cgfhghfehhgefffefg |
7cgfhghfehhgeffffge |
||
8dhiiiighiiihgghiih |
8dhiiiighiihgiighih |
||
5: |
0000000001111122223 |
6: |
0000000001111122223 |
1111233462334533444 |
1111233452334533444 |
||
2225545777456666555 |
2225546677467656565 |
||
3346768888788778687 |
3346787888578888677 |
||
499aca9a9abb999ab99 |
499aaab99bc9a99ab99 |
||
5aebdcdbbcdccabdcaa |
5aebcddbcddcbabccaa |
||
6bfeegfdcffeddeedbc |
6bfegefcdefecdfeddb |
||
7cgfghhefhggeghffge |
7cgfhgghehhgfggfefe |
||
8dhiiiihgiihihighif |
8dhiiihifiiighihgih |
1.34 Table The 18 nonisomorphic (25, 4, 1) designs. Their respective automorphism group orders are: 504,63,9,9,9,150,21,6,3,3,3,3,3,3,3,3,1,1.
1: |
00000000111111122222223333344445555666778899aabbil |
134567ce34578cd34568de468bh679f78ag79b9aabcddecejm |
|
298dfbhkea6g9kf7c9afkg5cgfihdgifchi8ejjcjdfhgfghkn |
|
iaolgmjnmbohnljonblhmjjdlknmeklnekmkinlimimonooloo |
|
2: |
0000000011111112222222333334444555566667778889abil |
13457bce34589cd3456ade489eh6acf7bdg79ab9ab9abdecjm |
|
2689gdfka76fekg798fckh5cfgidghichfi8chjjdfgjehfgkn |
|
iloahnjmbmohlnjobngmljjdknmeklnekmlkinmnilmliooooo |
|
3: |
0000000011111112222222333334444555566667778889abil |
13457bde34589ce3456acd489eh6acf7bdg79ab9ab9abcdejm |
|
2689gcfka76fdkg798fehk5cgfidhgicfhi8hcjjfdejgfghkn |
|
iloahmjnbmohnljobngljmjdkmneknleklmkminlniimlooooo |
|
4: |
0000000011111112222222333334444555566667778889abil |
13457aef3458bcf34569dg489dh69ef7acg79bc9acabdcdejm |
|
2689bcjha769djg7b8aejh5cbfkdagkebhk8gieihdifefghkn |
|
ilodgknmemohklnocnfkmljgminhnilflimkjnmljnmjlooooo |
|
5: |
00000000111111122222223333344445555666778899abcfil |
134567cd34578de34568ce468ag67bh789f79aab9bacdedgjm |
|
298abhgkba69fhk79bgakf5cdfiedgicehi8djejjcbfghehkn |
|
ieolfmjnmcognjlondlhmjjhlknmfklngkmkinilmiolmnoooo |
|
6: |
000000001111111222222333334444555566667778899abcde |
123468cj23479af3458bg456ah57bi78bd89ce9adabacghiff |
|
5ad97fek6be8gdl7ch9em89fcn6gdkfickgjdlhmeekblhijjg |
|
oignbhmlkjhcinmlfjdonmeikoajlonlgmomhnkoijnfolmnok |
|
7: |
000000001111111222222333333444445555566666777889al |
124789bh2589ace39abde47abcf8bcde79cdf78adg89b9cabm |
|
365egifj46fhjgi5gikhf6ihjegjikfggkjehfhekiadcbdcdn |
|
dcaolmnk7bolmnk8olmnj9nolmknolmhmnolilmnojkjheifgo |
|
8: |
000000001111111222222333333444455566667777889aacee |
12459bdf24569cg3458bh4568bi59bh9ac78ab89cgaddbedfl |
|
3786cihjd78haek96kfgja7fgclgkdiimfi9djebkjcjffhmgn |
|
oanegklmifbmljnecolmnjdkhnmlmeojnhnoglmhloiknokoio |
|
9: |
000000001111111222222233333444455556677889abcdefgh |
13456789345678a34567894679c67ad68be9aab9bdecijkijk |
|
2fbcdgiadg9jcfbaehficb5b8eg89ch7adfchdfgefghmlllmn |
|
onklehjmmlikehnjnmgkdloilhkmjfinkgjolomnokijnnmooo |
|
10: |
000000001111111222222233333444455566577889abccdfgh |
13456789345678a345678b467ad679e69c9b89aabfghdeeijk |
|
2jadebchekbdc9f9ciaedg5f8bg8gbf7afcihjdiemllikjlmn |
|
onmkgfliilnmhgjljmhnfkokmchnidhlegojjkokonnmnmlooo |
|
11: |
0000000011111112222222333334444555566778899acdefgh |
1345678b3456789345678a467bc679d68ae9daebcabbkijijk |
|
2iace9fgdjbgcah9cibhdf5a8fg8bfh79gfcfdgehedclmllmn |
|
ojmdhnklekniflmlekmjgnokmhnniglljhmojokoiikjmnnooo |
|
12: |
0000000011111112222222333334444555566778899accdfgh |
1345678a345678b34567894679e67ac68bd9fagbfabbdeeijk |
|
2j9ebcmickal9dibdielaj5a8df8beg79chcgdhehgfhjiklmn |
|
olhgdfnkhmfnegjgfnhmckomkininjljlkmokoiojnmlnmlooo |
|
13: |
0000000011111112222222333334444555566677899accdfgh |
134578ae34568bc345679d467ad78be689c7898ababbdeeijk |
|
2f6b9cjg9g7dakh8ahbeif5lbigl9ifamjffhcgdegfhikjlmn |
|
omkdhlnienimfljjclgnmkonckhmdjhenkgjiokoolnmnmlooo |
|
14: |
0000000011111112222222333334444555566677899accdfgh |
1345789c34568ad34567be467ad78be689c7898ababbdeeijk |
|
2h6beajg9f7bckh8agd9if5lbifl9jgamiffhcgdegfhjiklmn |
|
omidnflkenjglmikclmhnjoncjgmdkhenkhkjoioonmlnmlooo |
|
15: |
0000000011111112222222333334444555566677889abcdeil |
1345689b345679a34578ab467ad789e689c7bc9daeghffghjm |
|
2cg7afdi8dhfbjcf6eg9kc59ebhacbfdbag8ehcfdgijkijkkn |
|
lnkjohemknigomejinhomdmligoljhoklfonjmkmimnnnllloo |
|
16: |
0000000011111112222222333334444555566677889abcdeil |
134568ab345679b345789a467ae789c689d7be9cadfghfghjm |
|
2cf7g9dk8dgafich6ebfcj59dbgaebhcbaf8dfegchkijijkkn |
|
lnjihoemjnkohmeiknogdmmlkfoligojlhonimjmkmnnnllloo |
|
17: |
0000000011111112222222333333344445555666677778889a |
147adgjm4569chi4569bdf45689ae9bcf9ach89abbcdeabicd |
|
258behkn78ebfkl87caekgdb7cfglgkehefgjfildfighegjdj |
|
369cfiloadgjmnonlohimjimjhoknmojlkinoknmhnkomolmln |
|
18: |
0000000011111112222222333333344445555666677778889a |
147adgjm4569cef4569bcd45689ae9bdf9abe89acbcdiabcfd |
|
258behkn78bhkil87jafghhc7jbigcekggfihelhdheglgkfij |
|
369cfiloadgjmnoikoemnlmlfndokolnjmnjomnkinjomlohkm |
1.35 Table Admissible parameter sets of nontrivial BIBDs with r ≤ 41 and k ≤ v/2. Earlier listings of BIBDs by Hall [1016], Takeuchi [1999], and Kageyama [1241] and papers by Hanani [1042] and Wilson [2144] are frequently referenced. Multiples of known designs are included; although their existence is trivially implied, information concerning their number and resolvability usually is not.
The admissible parameter sets of nontrivial BIBDs satisfying r ≤ 41, 3 ≤ k ≤ v/2 and conditions (1) and (2) of Proposition 1.2 are ordered lexicographically by r, k, and λ (in this order). The column “Nd” contains the number Nd(v, b, r, k, λ) of pairwise nonisomorphic BIBD(v, b, r, k, λ) or the best known lower bound for this number. The column “Nr” contains a dash (-) if condition (3) of Proposition 1.10 is not satisfied. Otherwise it contains the number Nr of pairwise nonisomorphic resolutions of BIBD(v, b, r, k, λ)’s or the best known lower bound. The number of nonisomorphic RBIBDs is not necessarily Nr. Indeed, there are seven nonisomorphic resolutions of BIBD(15,35,7,3,1)s but only four nonisomorphic RBIBD(15,35,7,3,1)s (see Example II.2.76). The symbol ? indicates that the existence of the corresponding BIBD (RBIBD, respectively) is in doubt. The meanings of the “Comments” are:
m#x |
m-multiple of an existing BIBD #x |
m#x* |
m-multiple of #x that does not exist or whose existence is undecided |
R#x (D#x) |
residual (derived) design of #x that exists |
R#x* (D#x*) |
residual (derived) design of #x that does not exist or whose existence is undecided |
#x+#y |
union of two designs on the same set of elements |
#x↓#y |
design #x is a design with parameters (v, b, r, k, λ); design #y is a design with parameters (v, b′, b − r, k + 1, r − λ); add a new point ∞ to each block of to obtain ; then is a design with parameters (v + 1, b + b′, b, k + 1, r). |
PG (AG) |
projective (affine) geometry (see §VII.2) |
×1 |
BIBD does not exist by Bruck–Ryser–Chowla (BRC) Theorem (see §II.6.2) |
×2 |
BIBD is a residual of a BIBD that does not exist by the BRC theorem, and λ = 1 or 2 |
×3 |
RBIBD does not exist by Bose’s condition (see Theorem II.7.28). |
HD |
RBIBD(4t, 8t − 2, 4t − 1, 2t, 2t − 1) exists from a symmetric (Hadamard) BIBD(4t − 1, 4t − 1, 2t − 1, 2t − 1, t − 1); see §V.1. |
Typically no references are given under “Ref” for multiple, derived, or residual designs of known BIBDs. A trivial formula giving Nd(v, mb, mr, k, mλ) ≥ n + 1 is often used provided Nd(v, b, r, k, λ) ≥ n, m ≥ 2, n ≥ 1 (similarly for Nr). The column “Where?” gives a pointer to an explicit construction.
No |
v |
b |
r |
k |
λ |
Nd |
Nr Comments, Ref |
Where? |
---|---|---|---|---|---|---|---|---|
1 |
7 |
7 |
3 |
3 |
1 |
1 |
- PG(2,2) |
II.6.4 |
2 |
9 |
12 |
4 |
3 |
1 |
1 |
1 R#3,AG(2,3) |
1.22 |
3 |
13 |
13 |
4 |
4 |
1 |
1 |
- PG(2,3) |
1.26 |
4 |
6 |
10 |
5 |
3 |
2 |
1 |
0 R#7,×3 |
1.18 |
5 |
16 |
20 |
5 |
4 |
1 |
1 |
1 R#6,AG(2,4) |
1.31 |
6 |
21 |
21 |
5 |
5 |
1 |
1 |
- PG(2,4) |
VI.18.73 |
7 |
11 |
11 |
5 |
5 |
2 |
1 |
- |
1.26 |
8 |
13 |
26 |
6 |
3 |
1 |
2 |
- [1544] |
1.27 |
9 |
7 |
14 |
6 |
3 |
2 |
4 |
- 2#1,D#20 [1665] |
1.19 |
10 |
10 |
15 |
6 |
4 |
2 |
3 |
- R#13 [1665] |
1.25 |
11 |
25 |
30 |
6 |
5 |
1 |
1 |
1 R#12,AG(2,5) | |
12 |
31 |
31 |
6 |
6 |
1 |
1 |
- PG(2,5) |
VI.18.73 |
13 |
16 |
16 |
6 |
6 |
2 |
3 |
- [898] |
1.32 |
14 |
15 |
35 |
7 |
3 |
1 |
80 |
1.28 |
|
15 |
8 |
14 |
7 |
4 |
3 |
4 |
1.21 |
|
16 |
15 |
21 |
7 |
5 |
2 |
0 |
0 R#19*,×2 | |
17 |
36 |
42 |
7 |
6 |
1 |
0 |
0 R#18*,×2,AG(2,6) | |
18 |
43 |
43 |
7 |
7 |
1 |
0 |
- × 1,PG(2,6) | |
19 |
22 |
22 |
7 |
7 |
2 |
0 |
- ×1 | |
20 |
15 |
15 |
7 |
7 |
3 |
5 |
- PG2 (3, 2) [898] |
1.30 |
21 |
9 |
24 |
8 |
3 |
2 |
36 |
9 2#2,D#40 [1547] |
1.23 |
22 |
25 |
50 |
8 |
4 |
1 |
18 |
1.34 |
|
23 |
13 |
26 |
8 |
4 |
2 |
2461 |
- 2#3 [1743] | |
24 |
9 |
18 |
8 |
4 |
3 |
11 |
- D#41 [898] |
1.24 |
25 |
21 |
28 |
8 |
6 |
2 |
0 |
- R#28*, ×2 | |
26 |
49 |
56 |
8 |
7 |
1 |
1 |
1 R#27,AG(2,7) | |
27 |
57 |
57 |
8 |
8 |
1 |
1 |
- PG(2,7) |
VI.18.73 |
28 |
29 |
29 |
8 |
8 |
2 |
0 |
-×1 | |
29 |
19 |
57 |
9 |
3 |
1 |
11084874829 |
- [1268] |
VI.16.12 |
30 |
10 |
30 |
9 |
3 |
2 |
960 |
VI.16.81 |
|
31 |
7 |
21 |
9 |
3 |
3 |
10 |
- 3#1 [696] |
1.20 |
32 |
28 |
63 |
9 |
4 |
1 |
≥ 4747 |
III.1.8 |
|
33 |
10 |
18 |
9 |
5 |
4 |
21 |
0 R#41,×3 [898] |
VI.16.85 |
34 |
46 |
69 |
9 |
6 |
1 |
0 |
- [1138] | |
35 |
16 |
24 |
9 |
6 |
3 |
18920 |
- R#40 [1938] |
II.6.30 |
36 |
28 |
36 |
9 |
7 |
2 |
8 |
0 R#39,×3 [124] | |
37 |
64 |
72 |
9 |
8 |
1 |
1 |
1 R#38,AG(2,8) | |
38 |
73 |
73 |
9 |
9 |
1 |
1 |
- PG(2,8) |
VI.18.73 |
39 |
37 |
37 |
9 |
9 |
2 |
4 |
- [124] |
II.6.47 |
40 |
25 |
25 |
9 |
9 |
3 |
78 |
- [694] |
II.6.47 |
41 |
19 |
19 |
9 |
9 |
4 |
6 |
- [898] |
1.33 |
42 |
21 |
70 |
10 |
3 |
1 |
≥ 62336617 |
VI.16.12 |
|
43 |
6 |
20 |
10 |
3 |
4 |
4 | ||
44 |
16 |
40 |
10 |
4 |
2 |
≥ 2.2 · 106 | ||
45 |
41 |
82 |
10 |
5 |
1 |
≥ 15 |
- [1347] |
VI.16.16 |
46 |
21 |
42 |
10 |
5 |
2 |
≥ 22998 |
- 2#6 [2064] | |
47 |
11 |
22 |
10 |
5 |
4 |
4393 |
- 2#7,D#63 [323] | |
48 |
51 |
85 |
10 |
6 |
1 |
- | ||
49 |
21 |
30 |
10 |
7 |
3 |
3809 | ||
50 |
36 |
45 |
10 |
8 |
2 |
0 |
- R#53*,×2 | |
51 |
81 |
90 |
10 |
9 |
1 |
7 | ||
52 |
91 |
91 |
10 |
10 |
1 |
4 |
VI.18.73 |
|
53 |
46 |
46 |
10 |
10 |
2 |
0 |
- ×1 | |
54 |
31 |
31 |
10 |
10 |
3 |
151 |
- [1941] |
II.6.47 |
55 |
12 |
44 |
11 |
3 |
2 |
242995846 |
74700 D#84 [1704] |
VI.16.81 |
56 |
12 |
33 |
11 |
4 |
3 |
≥ 17172470 |
VI.16.83 |
|
57 |
45 |
99 |
11 |
5 |
1 |
≥ 16 |
? [1548] |
VI.16.31 |
58 |
12 |
22 |
11 |
6 |
5 |
11603 | ||
59 |
45 |
55 |
11 |
9 |
2 |
≥ 16 | ||
60 |
100 |
110 |
11 |
10 |
1 |
0 |
0 R#61*,AG(2,10) [1378] | |
61 |
111 |
111 |
11 |
11 |
1 |
0 |
- PG(2,10) [1378] | |
62 |
56 |
56 |
11 |
11 |
2 |
≥ 5 |
- [1188] |
II.6.47 |
63 |
23 |
23 |
11 |
11 |
5 |
1106 |
VI.18.73 |
|
64 |
25 |
100 |
12 |
3 |
1 |
≥ 1014 |
- [1544] |
VI.16.12 |
65 |
13 |
52 |
12 |
3 |
2 |
≥ 1897386 |
- 2#8,D#96 [790] | |
66 |
9 |
36 |
12 |
3 |
3 |
22521 | ||
67 |
7 |
28 |
12 |
3 |
4 |
35 |
- 4#1 [976] | |
68 |
37 |
111 |
12 |
4 |
1 |
≥ 51402 |
VI.16.14 |
|
69 |
19 |
57 |
12 |
4 |
2 |
≥ 423 |
- [1533] |
VI.16.15 |
70 |
13 |
39 |
12 |
4 |
3 |
≥ 3702 | ||
71 |
10 |
30 |
12 |
4 |
4 |
13769944 |
- 2#10 [696] | |
72 |
25 |
60 |
12 |
5 |
2 |
≥ 118884 | ||
73 |
61 |
122 |
12 |
6 |
1 |
? |
- | |
74 |
31 |
62 |
12 |
6 |
2 |
≥ 72 |
- 2#12 [1239] | |
75 |
21 |
42 |
12 |
6 |
3 |
≥ 236 |
- [1262] |
VI.16.18 |
76 |
16 |
32 |
12 |
6 |
4 |
≥ 111 |
- 2#13 [1224] | |
77 |
13 |
26 |
12 |
6 |
5 |
19072802 | ||
78 |
22 |
33 |
12 |
8 |
4 |
0 |
- R#85* [1372] | |
79 |
33 |
44 |
12 |
9 |
3 |
≥ 3375 | ||
80 |
55 |
66 |
12 |
10 |
2 |
0 |
- R#83*,×2 | |
81 |
121 |
132 |
12 |
11 |
1 |
≥ 1 |
≥ 1 R#82,AG(2,11) | |
82 |
133 |
133 |
12 |
12 |
1 |
≥ 1 |
- PG(2,11) |
VI.18.73 |
83 |
67 |
67 |
12 |
12 |
2 |
0 |
- ×1 | |
84 |
45 |
45 |
12 |
12 |
3 |
≥ 3752 |
- [1551] |
VI.18.73 |
85 |
34 |
34 |
12 |
12 |
4 |
0 |
- ×1 | |
86 |
27 |
117 |
13 |
3 |
1 |
≥ 1011 |
VI.16.12 |
|
87 |
40 |
130 |
13 |
4 |
1 |
≥ 106 |
≥ 2 PG(3,3) [1241] |
VI.16.14 |
88 |
66 |
143 |
13 |
6 |
1 |
≥ 1 |
? [693] |
II.3.32 |
89 |
14 |
26 |
13 |
7 |
6 |
15111019 | ||
90 |
27 |
39 |
13 |
9 |
4 |
≥ 2.45 · 108 | ||
91 |
40 |
52 |
13 |
10 |
3 |
? |
0 R#96*,×3 | |
92 |
66 |
78 |
13 |
11 |
2 |
≥ 2 | ||
93 |
144 |
156 |
13 |
12 |
1 |
? |
? R#94*,AG(2,12) | |
94 |
157 |
157 |
13 |
13 |
1 |
? |
- PG(2,12) | |
95 |
79 |
79 |
13 |
13 |
2 |
≥ 2 |
- [114] |
II.6.47 |
96 |
53 |
53 |
13 |
13 |
3 |
0 |
- ×1 | |
97 |
40 |
40 |
13 |
13 |
4 |
≥ 1108800 |
- PG2(3, 3) [1374] |
VI.18.73 |
98 |
27 |
27 |
13 |
13 |
6 |
208310 |
- [1943] |
VI.18.73 |
99 |
15 |
70 |
14 |
3 |
2 |
≥ 685521 | ||
100 |
22 |
77 |
14 |
4 |
2 |
≥ 7921 |
- [827] |
VI.16.15 |
101 |
8 |
28 |
14 |
4 |
6 |
2310 |
4 2#15 [1743] | |
102 |
15 |
42 |
14 |
5 |
4 |
≥ 896 |
VI.16.85 |
|
103 |
36 |
84 |
14 |
6 |
2 |
≥ 5 |
VI.16.86 |
|
104 |
15 |
35 |
14 |
6 |
5 |
≥ 117 |
VI.16.86 |
|
105 |
85 |
170 |
14 |
7 |
1 |
? |
- | |
106 |
43 |
86 |
14 |
7 |
2 |
≥ 4 |
- 2#18* [1] |
VI.16.30 |
107 |
29 |
58 |
14 |
7 |
3 |
≥ 1 |
- |
VI.16.30 |
108 |
22 |
44 |
14 |
7 |
4 |
≥ 3393 |
- 2#19* [2031] |
VI.16.30 |
109 |
15 |
30 |
14 |
7 |
6 |
≥ 57810 |
- 2#20,D#143 [1545] | |
110 |
78 |
91 |
14 |
12 |
2 |
0 |
- R#113*,×2 | |
111 |
169 |
182 |
14 |
13 |
1 |
≥ 1 |
≥ 1 R#112,AG(2,13) | |
112 |
183 |
183 |
14 |
14 |
1 |
≥ 1 |
- PG(2,13) |
VI.18.73 |
113 |
92 |
92 |
14 |
14 |
2 |
0 |
- ×1 | |
114 |
31 |
155 |
15 |
3 |
1 |
≥ 6 · 1016 |
- [1548] |
VI.16.12 |
115 |
16 |
80 |
15 |
3 |
2 |
≥ 1013 |
- D#169 [1548] |
VI.16.13 |
116 |
11 |
55 |
15 |
3 |
3 |
≥ 436800 |
- [1548] |
VI.16.24 |
117 |
7 |
35 |
15 |
3 |
5 |
109 |
- 5#1 [1938] | |
118 |
6 |
30 |
15 |
3 |
6 |
6 | ||
119 |
16 |
60 |
15 |
4 |
3 |
≥ 6 · 105 |
≥ 6 · 105 3#5,D#170 [1548] | |
120 |
61 |
183 |
15 |
5 |
1 |
≥ 10 |
- [587] |
VI.16.16 |
121 |
31 |
93 |
15 |
5 |
2 |
≥ 1 |
- |
VI.16.17 |
122 |
21 |
63 |
15 |
5 |
3 |
≥ 109 |
- 3#6 [331] | |
123 |
16 |
48 |
15 |
5 |
4 |
≥ 294 | ||
124 |
13 |
39 |
15 |
5 |
5 |
≥ 76 |
VI.16.17 |
|
125 |
11 |
33 |
15 |
5 |
6 |
≥ 127 | ||
126 |
76 |
190 |
15 |
6 |
1 |
≥ 1 |
- [1612] |
II.3.32 |
127 |
26 |
65 |
15 |
6 |
3 |
≥ 1 |
- [1016] |
VI.16.89 |
128 |
16 |
40 |
15 |
6 |
5 |
≥ 25 | ||
129 |
91 |
195 |
15 |
7 |
1 |
≥ 2 |
? [246] |
VI.16.70 |
130 |
16 |
30 |
15 |
8 |
7 |
≥ 9 · 107 | ||
131 |
21 |
35 |
15 |
9 |
6 |
≥ 104 | ||
132 |
136 |
204 |
15 |
10 |
1 |
? |
- | |
133 |
46 |
69 |
15 |
10 |
3 |
? |
- | |
134 |
28 |
42 |
15 |
10 |
5 |
≥ 3 |
- R#141* [2090] | |
135 |
56 |
70 |
15 |
12 |
3 |
≥ 4 |
- R#140 [1005] | |
136 |
91 |
105 |
15 |
13 |
2 |
0 |
0 R#139*,×2 | |
137 |
196 |
210 |
15 |
14 |
1 |
0 |
0 R#138*,×2,AG(2,14) | |
138 |
211 |
211 |
15 |
15 |
1 |
0 |
- × 1,PG(2,14) | |
139 |
106 |
106 |
15 |
15 |
2 |
0 |
-×1 | |
140 |
71 |
71 |
15 |
15 |
3 |
≥ 72 |
II.6.47 |
|
141 |
43 |
43 |
15 |
15 |
5 |
0 |
-×1 | |
142 |
36 |
36 |
15 |
15 |
6 |
≥ 25634 |
- [1944] |
VI.18.73 |
143 |
31 |
31 |
15 |
15 |
7 |
≥ 22478260 |
- PG3(4, 2) [1375] |
VI.18.80 |
144 |
33 |
176 |
16 |
3 |
1 |
≥ 1013 |
VI.16.12 |
|
145 |
9 |
48 |
16 |
3 |
4 |
16585031 |
149041 4#2 [1707] | |
146 |
49 |
196 |
16 |
4 |
1 |
≥ 769 |
VI.16.14 |
|
147 |
25 |
100 |
16 |
4 |
2 |
≥ 17 |
- 2#22 | |
148 |
17 |
68 |
16 |
4 |
3 |
≥ 542 | ||
149 |
13 |
52 |
16 |
4 |
4 |
≥ 2462 |
-4#3 | |
150 |
9 |
36 |
16 |
4 |
6 |
270474142 |
- 2#24 [1705] | |
151 |
65 |
208 |
16 |
5 |
1 |
≥ 2 |
VI.16.16 |
|
152 |
81 |
216 |
16 |
6 |
1 |
? |
- | |
153 |
21 |
56 |
16 |
6 |
4 |
≥ 1 |
- 2#25* [1042] |
II.3.32 |
154 |
49 |
112 |
16 |
7 |
2 |
≥ 1 |
≥ 1 2#26 | |
155 |
113 |
226 |
16 |
8 |
1 |
? |
- | |
156 |
57 |
114 |
16 |
8 |
2 |
≥ 1362 |
- 2#27 [1239] | |
157 |
29 |
58 |
16 |
8 |
4 |
≥ 2 |
- 2#28* [1999] |
VI.16.30 |
158 |
17 |
34 |
16 |
8 |
7 |
≥ 28 | ||
159 |
145 |
232 |
16 |
10 |
1 |
? |
- | |
160 |
25 |
40 |
16 |
10 |
6 |
≥ 43 | ||
161 |
33 |
48 |
16 |
11 |
5 |
≥ 19 | ||
162 |
177 |
236 |
16 |
12 |
1 |
? |
- | |
163 |
45 |
60 |
16 |
12 |
4 |
≥ 1 |
- R#170 [180] | |
164 |
65 |
80 |
16 |
13 |
3 |
? |
0 R#169*,×3 | |
165 |
105 |
120 |
16 |
14 |
2 |
? |
- R#168* | |
166 |
225 |
240 |
16 |
15 |
1 |
? |
? R#167*,AG(2,15) | |
167 |
241 |
241 |
16 |
16 |
1 |
? |
- PG(2,15) | |
168 |
121 |
121 |
16 |
16 |
2 |
? |
- | |
169 |
81 |
81 |
16 |
16 |
3 |
? |
- | |
170 |
61 |
61 |
16 |
16 |
4 |
≥ 6 |
- [1398] |
II.6.47 |
171 |
49 |
49 |
16 |
16 |
5 |
≥ 12146 |
- [1321] |
II.6.47 |
172 |
41 |
41 |
16 |
16 |
6 |
≥ 115307 |
- [1938] |
II.6.47 |
173 |
18 |
102 |
17 |
3 |
2 |
≥ 4 · 1014 |
VI.16.81 |
|
174 |
52 |
221 |
17 |
4 |
1 |
≥ 206 |
VI.16.14 |
|
175 |
35 |
119 |
17 |
5 |
2 |
≥ 1 |
VI.16.17 |
|
176 |
18 |
51 |
17 |
6 |
5 |
≥ 582 |
VI.16.86 |
|
177 |
35 |
85 |
17 |
7 |
3 |
≥ 2 | ||
178 |
120 |
255 |
17 |
8 |
1 |
≥ 94 | ||
179 |
18 |
34 |
17 |
9 |
8 |
≥ 103 | ||
180 |
52 |
68 |
17 |
13 |
4 |
≥ 6 | ||
181 |
120 |
136 |
17 |
15 |
2 |
0 |
0 R#184*,×2 | |
182 |
256 |
272 |
17 |
16 |
1 |
≥ 189 | ||
183 |
273 |
273 |
17 |
17 |
1 |
≥ 22 |
VI.18.73 |
|
184 |
137 |
137 |
17 |
17 |
2 |
0 |
-×1 | |
185 |
69 |
69 |
17 |
17 |
4 |
≥ 4 |
- [2065] |
II.6.47 |
186 |
35 |
35 |
17 |
17 |
8 |
≥ 108131 |
- [1944] |
VI.18.73 |
187 |
37 |
222 |
18 |
3 |
1 |
≥ 1010 |
VI.16.12 |
|
188 |
19 |
114 |
18 |
3 |
2 |
≥ 2 · 109 |
- 2#29,D#231* [1548] | |
189 |
13 |
78 |
18 |
3 |
3 |
≥ 3 · 109 |
- 3#8 [1548] | |
190 |
10 |
60 |
18 |
3 |
4 |
≥ 961 |
- 2#30 | |
191 |
7 |
42 |
18 |
3 |
6 |
418 | ||
192 |
28 |
126 |
18 |
4 |
2 |
≥ 139 |
≥ 8 2#32 | |
193 |
10 |
45 |
18 |
4 |
6 |
≥ 14819 |
- 3#10 [1548] | |
194 |
25 |
90 |
18 |
5 |
3 |
≥ 1017 |
≥ 1017 3#11 [1548] | |
195 |
10 |
36 |
18 |
5 |
8 |
≥ 135922 | ||
196 |
91 |
273 |
18 |
6 |
1 |
≥ 4 |
VI.16.18 |
|
197 |
46 |
138 |
18 |
6 |
2 |
≥ 1 |
- 2#34* |
VI.16.18 |
198 |
31 |
93 |
18 |
6 |
3 |
≥ 1022 |
- 3#12 [1548] | |
199 |
19 |
57 |
18 |
6 |
5 |
≥ 1535 |
- D#232* [734] |
II.7.46 |
200 |
16 |
48 |
18 |
6 |
6 |
≥ 108 |
- 3#13,2#35 [1548] | |
201 |
28 |
72 |
18 |
7 |
4 |
≥ 392 |
? 2#36 [1224] | |
202 |
64 |
144 |
18 |
8 |
2 |
≥ 121 |
≥ 121 2#37 [1225] | |
203 |
145 |
290 |
18 |
9 |
1 |
? |
- | |
204 |
73 |
146 |
18 |
9 |
2 |
≥ 3500 |
- 2#38 [1239] | |
205 |
49 |
98 |
18 |
9 |
3 |
≥ 1 |
- [1628] |
VI.16.30 |
206 |
37 |
74 |
18 |
9 |
4 |
≥ 852 |
- 2#39 [1224] | |
207 |
25 |
50 |
18 |
9 |
6 |
≥ 79 |
- 2#40 | |
208 |
19 |
38 |
18 |
9 |
8 |
≥ 108 |
- 2#41,D#233 [734] | |
209 |
55 |
99 |
18 |
10 |
3 |
? |
- | |
210 |
100 |
150 |
18 |
12 |
2 |
? |
- | |
211 |
34 |
51 |
18 |
12 |
6 |
≥ 2 |
- R#218* [1496] | |
212 |
85 |
102 |
18 |
15 |
3 |
? |
- R#217* | |
213 |
136 |
153 |
18 |
16 |
2 |
? |
- R#216* | |
214 |
289 |
306 |
18 |
17 |
1 |
≥ 1 |
≥ 1 R#215,AG(2,17) | |
215 |
307 |
307 |
18 |
18 |
1 |
≥ 1 |
- PG(2,17) |
VI.18.73 |
216 |
154 |
154 |
18 |
18 |
2 |
? |
- | |
217 |
103 |
103 |
18 |
18 |
3 |
0 |
-×1 | |
218 |
52 |
52 |
18 |
18 |
6 |
0 |
-×1 | |
219 |
39 |
247 |
19 |
3 |
1 |
≥ 1044 |
VI.16.12 |
|
220 |
20 |
95 |
19 |
4 |
3 |
≥ 10040 |
VI.16.83 |
|
221 |
20 |
76 |
19 |
5 |
4 |
≥ 10067 |
VI.16.85 |
|
222 |
96 |
304 |
19 |
6 |
1 |
≥ 1 |
? [1609] |
II.3.32 |
223 |
153 |
323 |
19 |
9 |
1 |
? |
? | |
224 |
20 |
38 |
19 |
10 |
9 |
≥ 1016 |
3 R#233,HD [1319] | |
225 |
39 |
57 |
19 |
13 |
6 |
? |
0 R#232*,×3 | |
226 |
96 |
114 |
19 |
16 |
3 |
? |
0 R#231*,×3 | |
227 |
153 |
171 |
19 |
17 |
2 |
0 |
0 R#230*,×2 | |
228 |
324 |
342 |
19 |
18 |
1 |
? |
? R#229*,AG(2,18) | |
229 |
343 |
343 |
19 |
19 |
1 |
? |
- PG(2,18) | |
230 |
172 |
172 |
19 |
19 |
2 |
0 |
-×1 | |
231 |
115 |
115 |
19 |
19 |
3 |
? |
- | |
232 |
58 |
58 |
19 |
19 |
6 |
0 |
-×1 | |
233 |
39 |
39 |
19 |
19 |
9 |
≥ 5.87 · 1014 |
- [1374] |
V.1.28 |
234 |
21 |
140 |
20 |
3 |
2 |
≥ 5 · 1014 |
≥ 79 2#42,D#307 [1548] | |
235 |
9 |
60 |
20 |
3 |
5 |
5862121434 |
203047732 5#2 [1707] | |
236 |
6 |
40 |
20 |
3 |
8 |
13 |
1 4#4 [1174] | |
237 |
61 |
305 |
20 |
4 |
1 |
≥ 18132 |
VI.16.61 |
|
238 |
31 |
155 |
20 |
4 |
2 |
≥ 43 |
VI.16.15 |
|
239 |
21 |
105 |
20 |
4 |
3 |
≥ 26320 |
VI.16.15 |
|
240 |
16 |
80 |
20 |
4 |
4 |
≥ 6 · 105 |
≥ 6 · 105 4#5 [1548] | |
241 |
13 |
65 |
20 |
4 |
5 |
≥ 103 |
- 5#3 [1548] | |
242 |
11 |
55 |
20 |
4 |
6 |
≥ 348 |
- [734] |
VI.16.15 |
243 |
81 |
324 |
20 |
5 |
1 |
≥ 1 |
- [1999] |
VI.16.16 |
244 |
41 |
164 |
20 |
5 |
2 |
≥ 6 |
-2#45 | |
245 |
21 |
84 |
20 |
5 |
4 |
≥ 109 |
- 4#6,D#309 [1548] |
II.7.46 |
246 |
17 |
68 |
20 |
5 |
5 |
≥ 7260 |
VI.16.17 |
|
247 |
11 |
44 |
20 |
5 |
8 |
≥ 4394 |
-4#7 | |
248 |
51 |
170 |
20 |
6 |
2 |
≥ 446 |
- 2#48* [2063] |
VI.16.91 |
249 |
21 |
70 |
20 |
6 |
5 |
≥ 1 |
- D#310 [1042] |
VI.16.18 |
250 |
21 |
60 |
20 |
7 |
6 |
≥ 3810 |
≥ 1 2#49,D#311* [1] | |
251 |
36 |
90 |
20 |
8 |
4 |
≥ 2 | ||
252 |
81 |
180 |
20 |
9 |
2 |
≥ 1169 |
≥ 1169 2#51 [1225] | |
253 |
181 |
362 |
20 |
10 |
1 |
? |
- | |
254 |
91 |
182 |
20 |
10 |
2 |
≥ 46790 |
- 2#52 [1239] | |
255 |
61 |
122 |
20 |
10 |
3 |
≥ 1 |
- [1628] |
VI.16.30 |
256 |
46 |
92 |
20 |
10 |
4 |
≥ 1 |
- 2#53* [1628] |
VI.16.30 |
257 |
37 |
74 |
20 |
10 |
5 |
≥ 1 |
- [1999] |
VI.16.30 |
258 |
31 |
62 |
20 |
10 |
6 |
≥ 152 |
- 2#54 | |
259 |
21 |
42 |
20 |
10 |
9 |
≥ 4 | ||
260 |
111 |
185 |
20 |
12 |
2 |
? |
- | |
261 |
45 |
75 |
20 |
12 |
5 |
? |
- | |
262 |
141 |
188 |
20 |
15 |
2 |
? |
- | |
263 |
57 |
76 |
20 |
15 |
5 |
? |
- R#271* | |
264 |
36 |
48 |
20 |
15 |
8 |
≥ 1 |
- [1912] | |
265 |
76 |
95 |
20 |
16 |
4 |
≥ 1 | ||
266 |
171 |
190 |
20 |
18 |
2 |
? |
- R#269* | |
267 |
361 |
380 |
20 |
19 |
1 |
≥ 1 |
≥ 1 R#268,AG(2,19) | |
268 |
381 |
381 |
20 |
20 |
1 |
≥ 1 |
- PG(2,19) |
VI.18.73 |
269 |
191 |
191 |
20 |
20 |
2 |
? |
- | |
270 |
96 |
96 |
20 |
20 |
4 |
≥ 2 |
- [1839] |
VI.18.73 |
271 |
77 |
77 |
20 |
20 |
5 |
0 |
-×1 | |
272 |
43 |
301 |
21 |
3 |
1 |
≥ 5 · 1064 |
VI.16.12 |
|
273 |
22 |
154 |
21 |
3 |
2 |
≥ 3 · 109 |
- D#336* [1548] |
VI.16.81 |
274 |
15 |
105 |
21 |
3 |
3 |
≥ 1015 |
≥ 1011 3#14 [1548] | |
275 |
8 |
56 |
21 |
3 |
6 |
3077244 |
- [1938] |
VI.16.82 |
276 |
7 |
49 |
21 |
3 |
7 |
1508 | ||
277 |
64 |
336 |
21 |
4 |
1 |
≥ 1.4 · 1031 ≥ |
2.5 · 1037 [1546] |
VI.16.14 |
278 |
8 |
42 |
21 |
4 |
9 |
8360901 |
10 3#15 [696] | |
279 |
85 |
357 |
21 |
5 |
1 |
≥ 3.2 · 1038 |
VI.16.70 |
|
280 |
15 |
63 |
21 |
5 |
6 |
≥ 2211 |
≥ 149 3#16* [1549] |
VI.16.17 |
281 |
106 |
371 |
21 |
6 |
1 |
≥ 1 |
- [1606] |
II.3.32 |
282 |
36 |
126 |
21 |
6 |
3 |
≥ 1 |
VI.16.86 |
|
283 |
22 |
77 |
21 |
6 |
5 |
≥ 3 |
- D#337,#6|#153 [1053] |
VI.16.18 |
284 |
16 |
56 |
21 |
6 |
7 |
≥ 1 |
- #13+#128 [1903] | |
285 |
127 |
381 |
21 |
7 |
1 |
? |
- | |
286 |
64 |
192 |
21 |
7 |
2 |
≥ 1 |
- [2] |
II.3.32 |
287 |
43 |
129 |
21 |
7 |
3 |
≥ 1 |
- 3#18* [2144] |
VI.16.30 |
288 |
22 |
66 |
21 |
7 |
6 |
≥ 1 |
- 3#19*,D#338* [1042] |
II.7.47 |
289 |
19 |
57 |
21 |
7 |
7 |
≥ 1 |
- [2144] |
II.7.46 |
290 |
15 |
45 |
21 |
7 |
9 |
≥ 108 |
- 3#20 [1548] | |
291 |
57 |
133 |
21 |
9 |
3 |
≥ 1 |
- [21] | |
292 |
190 |
399 |
21 |
10 |
1 |
? |
? | |
293 |
22 |
42 |
21 |
11 |
10 |
≥ 2 | ||
294 |
232 |
406 |
21 |
12 |
1 |
? |
- | |
295 |
274 |
411 |
21 |
14 |
1 |
? |
- | |
296 |
92 |
138 |
21 |
14 |
3 |
? |
- | |
297 |
40 |
60 |
21 |
14 |
7 |
? |
- R#311* | |
298 |
295 |
413 |
21 |
15 |
1 |
? |
- | |
299 |
50 |
70 |
21 |
15 |
6 |
≥ 1 |
- R#310 [1185] | |
300 |
64 |
84 |
21 |
16 |
5 |
≥ 10810800 | ||
301 |
85 |
105 |
21 |
17 |
4 |
? |
0 R#308*,×3 | |
302 |
120 |
140 |
21 |
18 |
3 |
? |
- R#307* | |
303 |
190 |
210 |
21 |
19 |
2 |
? |
0 R#306*,×3 | |
304 |
400 |
420 |
21 |
20 |
1 |
? |
? R#305*,AG(2,20) | |
305 |
421 |
421 |
21 |
21 |
1 |
? |
- PG(2,20) | |
306 |
211 |
211 |
21 |
21 |
2 |
? |
- | |
307 |
141 |
141 |
21 |
21 |
3 |
0 |
- ×1 | |
308 |
106 |
106 |
21 |
21 |
4 |
0 |
- ×1 | |
309 |
85 |
85 |
21 |
21 |
5 |
≥ 213964 |
- PG2 (3,4) [1223] |
VI.18.73 |
310 |
71 |
71 |
21 |
21 |
6 |
≥ 2 |
- [1185] |
II.6.47 |
311 |
61 |
61 |
21 |
21 |
7 |
0 |
-×1 | |
312 |
43 |
43 |
21 |
21 |
10 |
≥ 82 |
VI.18.73 |
|
313 |
45 |
330 |
22 |
3 |
1 |
≥ 6 · 1076 |
VI.16.12 |
|
314 |
12 |
88 |
22 |
3 |
4 |
≥ 20476 |
≥ 3 2#55 | |
315 |
34 |
187 |
22 |
4 |
2 |
≥ 1 |
- [1042] |
VI.16.15 |
316 |
12 |
66 |
22 |
4 |
6 |
≥ 1.7 · 106 |
≥ 1 2#56 | |
317 |
45 |
198 |
22 |
5 |
2 |
≥ 17 |
? 2#57 | |
318 |
111 |
407 |
22 |
6 |
1 |
≥ 1 |
- [1609] |
II.3.32 |
319 |
12 |
44 |
22 |
6 |
10 |
≥ 11604 | ||
320 |
133 |
418 |
22 |
7 |
1 |
? |
? | |
321 |
45 |
110 |
22 |
9 |
4 |
≥ 1353 |
? 2#59 [1224] | |
322 |
100 |
220 |
22 |
10 |
2 |
≥ 1 |
? 2#60* [528] |
IV.2.67 |
323 |
221 |
442 |
22 |
11 |
1 |
? |
- | |
324 |
111 |
222 |
22 |
11 |
2 |
? |
- 2#61* | |
325 |
56 |
112 |
22 |
11 |
4 |
≥ 2696 |
- 2#62 [1224] | |
326 |
45 |
90 |
22 |
11 |
5 |
≥ 1 |
- [1628] |
VI.16.30 |
327 |
23 |
46 |
22 |
11 |
10 |
≥ 1103 |
- 2#63,D#351 | |
328 |
287 |
451 |
22 |
14 |
1 |
? |
- | |
329 |
45 |
66 |
22 |
15 |
7 |
? |
? R#338* | |
330 |
56 |
77 |
22 |
16 |
6 |
≥ 3 |
- R#337 [2045] | |
331 |
133 |
154 |
22 |
19 |
3 |
? |
0 R#336*,×3 | |
332 |
210 |
231 |
22 |
20 |
2 |
0 |
- R#335*,×2 | |
333 |
441 |
462 |
22 |
21 |
1 |
0 |
0 R#334*,×2,AG(2,21) | |
334 |
463 |
463 |
22 |
22 |
1 |
0 |
- ×1,PG(2,21) | |
335 |
232 |
232 |
22 |
22 |
2 |
0 |
-×1 | |
336 |
155 |
155 |
22 |
22 |
3 |
? |
- | |
337 |
78 |
78 |
22 |
22 |
6 |
≥ 3 |
- [2045] |
II.6.47 |
338 |
67 |
67 |
22 |
22 |
7 |
0 |
-×1 | |
339 |
24 |
184 |
23 |
3 |
2 |
≥ 3 · 109 |
VI.16.81 |
|
340 |
24 |
138 |
23 |
4 |
3 |
≥ 1 |
VI.16.83 |
|
341 |
24 |
92 |
23 |
6 |
5 |
≥ 1 |
VI.16.86 |
|
342 |
70 |
230 |
23 |
7 |
2 |
≥ 1 |
? [2] |
VI.16.88 |
343 |
24 |
69 |
23 |
8 |
7 |
≥ 1 |
? D#407 [1042] |
VI.16.88 |
344 |
70 |
161 |
23 |
10 |
3 |
? |
? | |
345 |
231 |
483 |
23 |
11 |
1 |
? |
? | |
346 |
24 |
46 |
23 |
12 |
11 |
≥ 1027 | ||
347 |
231 |
253 |
23 |
21 |
2 |
0 |
0 R#350*,×2 | |
348 |
484 |
506 |
23 |
22 |
1 |
0 |
0 R#349*,×2,AG(2,22) | |
349 |
507 |
507 |
23 |
23 |
1 |
0 |
- ×1,PG(2,22) | |
350 |
254 |
254 |
23 |
23 |
2 |
0 |
-×1 | |
351 |
47 |
47 |
23 |
23 |
11 |
≥ 55 |
- [620] |
VI.18.73 |
352 |
49 |
392 |
24 |
3 |
1 |
≥ 6 · 1014 |
VI.16.12 |
|
353 |
25 |
200 |
24 |
3 |
2 |
≥ 1014 |
- 2#64,D#438* | |
354 |
17 |
136 |
24 |
3 |
3 |
≥ 4968 |
- [1548] |
VI.16.24 |
355 |
13 |
104 |
24 |
3 |
4 |
≥ 108 |
- 4#8 [1548] | |
356 |
9 |
72 |
24 |
3 |
6 |
≥ 107 |
≥ 105 6#2 [1548] | |
357 |
7 |
56 |
24 |
3 |
8 |
5413 | ||
358 |
73 |
438 |
24 |
4 |
1 |
≥ 107 |
- [332] |
VI.16.61 |
359 |
37 |
222 |
24 |
4 |
2 |
≥ 4 |
- 2#68 | |
360 |
25 |
150 |
24 |
4 |
3 |
≥ 1022 |
- 3#22,D#439* [1548] | |
361 |
19 |
114 |
24 |
4 |
4 |
≥ 424 |
- 2#69 | |
362 |
13 |
78 |
24 |
4 |
6 |
≥ 108 |
- 6#3 [1548] | |
363 |
10 |
60 |
24 |
4 |
8 |
≥ 1759614 |
- 4#10 [1545] | |
364 |
9 |
54 |
24 |
4 |
9 |
≥ 106 |
- 3#24 [1548] | |
365 |
25 |
120 |
24 |
5 |
4 |
≥ 1017 |
≥ 1017 4#11,D#440 [1548] | |
366 |
121 |
484 |
24 |
6 |
1 |
≥ 1 |
VI.16.31 |
|
367 |
61 |
244 |
24 |
6 |
2 |
≥ 1 |
- 2#73* |
VI.16.18 |
368 |
41 |
164 |
24 |
6 |
3 |
≥ 1 |
- |
VI.16.18 |
369 |
31 |
124 |
24 |
6 |
4 |
≥ 1022 |
- 4#12 [1548] | |
370 |
25 |
100 |
24 |
6 |
5 |
≥ 1 |
- D#441 [1042] | |
371 |
21 |
84 |
24 |
6 |
6 |
≥ 1 |
- 3#25*,2#75 | |
372 |
16 |
64 |
24 |
6 |
8 |
≥ 108 |
- 4#13 [1548] | |
373 |
13 |
52 |
24 |
6 |
10 |
≥ 2572157 |
- 2#77 | |
374 |
49 |
168 |
24 |
7 |
3 |
≥ 1052 |
≥ 1052 3#26 [1548] | |
375 |
169 |
507 |
24 |
8 |
1 |
? |
- | |
376 |
85 |
255 |
24 |
8 |
2 |
≥ 1 |
- [1628] |
VI.16.30 |
377 |
57 |
171 |
24 |
8 |
3 |
≥ 1063 |
- 3#27 [1548] | |
378 |
43 |
129 |
24 |
8 |
4 |
≥ 1 |
- [2144] |
VI.16.30 |
379 |
29 |
87 |
24 |
8 |
6 |
≥ 1 |
- 3#28* [1042] |
VI.16.30 |
380 |
25 |
75 |
24 |
8 |
7 |
≥ 1 |
- D#442* [2144] |
VI.16.31 |
381 |
22 |
66 |
24 |
8 |
8 |
≥ 1 |
- 2#78* |
VI.16.30 |
382 |
33 |
88 |
24 |
9 |
6 |
≥ 3376 |
- 2#79 | |
383 |
55 |
132 |
24 |
10 |
4 |
? |
- 2#80* | |
384 |
25 |
60 |
24 |
10 |
9 |
≥ 3 | ||
385 |
121 |
264 |
24 |
11 |
2 |
≥ 365 |
≥ 365 2#81 [1225] | |
386 |
265 |
530 |
24 |
12 |
1 |
? |
- | |
387 |
133 |
266 |
24 |
12 |
2 |
≥ 9979200 |
- 2#82 [1239] | |
388 |
89 |
178 |
24 |
12 |
3 |
? |
- | |
389 |
67 |
134 |
24 |
12 |
4 |
≥ 1 |
- 2#83* [1] |
VI.16.30 |
390 |
45 |
90 |
24 |
12 |
6 |
≥ 3753 |
- 2#84 | |
391 |
34 |
68 |
24 |
12 |
8 |
≥ 1 |
- 2#85* [1] |
VI.16.30 |
392 |
25 |
50 |
24 |
12 |
11 |
≥ 10 | ||
393 |
105 |
180 |
24 |
14 |
3 |
? |
- | |
394 |
85 |
136 |
24 |
15 |
4 |
? |
- | |
395 |
46 |
69 |
24 |
16 |
8 |
≥ 1 |
- R#407 [1185] | |
396 |
69 |
92 |
24 |
18 |
6 |
? |
- R#406* | |
397 |
115 |
138 |
24 |
20 |
4 |
? |
- R#405* | |
398 |
161 |
184 |
24 |
21 |
3 |
? |
- R#404* | |
399 |
49 |
56 |
24 |
21 |
10 |
≥ 1 |
- [2144] |
VI.16.32 |
400 |
253 |
276 |
24 |
22 |
2 |
0 |
- R#403*,×2 | |
401 |
529 |
552 |
24 |
23 |
1 |
≥ 1 |
≥ 1 R#402,AG(2,23) | |
402 |
553 |
553 |
24 |
24 |
1 |
≥ 1 |
- PG(2,23) |
VI.18.73 |
403 |
277 |
277 |
24 |
24 |
2 |
0 |
-×1 | |
404 |
185 |
185 |
24 |
24 |
3 |
0 |
-×1 | |
405 |
139 |
139 |
24 |
24 |
4 |
? |
- | |
406 |
93 |
93 |
24 |
24 |
6 |
0 |
-×1 | |
407 |
70 |
70 |
24 |
24 |
8 |
≥ 28 |
II.6.47 |
|
408 |
51 |
425 |
25 |
3 |
1 |
≥ 6 · 1053 |
VI.16.12 |
|
409 |
6 |
50 |
25 |
3 |
10 |
19 | ||
410 |
76 |
475 |
25 |
4 |
1 |
≥ 169574 |
VI.16.14 |
|
411 |
16 |
100 |
25 |
4 |
5 |
≥ 106 |
≥ 106 5#5 [1548] | |
412 |
101 |
505 |
25 |
5 |
1 |
≥ 3 |
- [393] |
VI.16.62 |
413 |
51 |
255 |
25 |
5 |
2 |
≥ 1 |
- [1042] |
VI.16.17 |
414 |
26 |
130 |
25 |
5 |
4 |
≥ 1 |
- D#471* [1042] |
II.7.46 |
415 |
21 |
105 |
25 |
5 |
5 |
≥ 109 |
- 5#6 [1548] | |
416 |
11 |
55 |
25 |
5 |
10 |
≥ 3337 |
- 5#7 | |
417 |
126 |
525 |
25 |
6 |
1 |
≥ 2 |
VI.16.92 |
|
418 |
176 |
550 |
25 |
8 |
1 |
? |
? | |
419 |
226 |
565 |
25 |
10 |
1 |
? |
- | |
420 |
76 |
190 |
25 |
10 |
3 |
? |
- | |
421 |
46 |
115 |
25 |
10 |
5 |
≥ 1 |
- [2071] | |
422 |
26 |
65 |
25 |
10 |
9 |
≥ 19 | ||
423 |
276 |
575 |
25 |
12 |
1 |
? |
? | |
424 |
26 |
50 |
25 |
13 |
12 |
≥ 1 | ||
425 |
351 |
585 |
25 |
15 |
1 |
? |
- | |
426 |
51 |
85 |
25 |
15 |
7 |
? |
- | |
427 |
36 |
60 |
25 |
15 |
10 |
≥ 1 |
- R#443 [1042] | |
428 |
51 |
75 |
25 |
17 |
8 |
? |
0 R#442*,×3 | |
429 |
76 |
100 |
25 |
19 |
6 |
≥ 1 |
0 R#441,×3 | |
430 |
476 |
595 |
25 |
20 |
1 |
? |
- | |
431 |
96 |
120 |
25 |
20 |
5 |
≥ 1 |
- R#440 | |
432 |
126 |
150 |
25 |
21 |
4 |
? |
0 R#439*,×3 | |
433 |
176 |
200 |
25 |
22 |
3 |
? |
0 R#438*,×3 | |
434 |
276 |
300 |
25 |
23 |
2 |
? |
0 R#437*,×3 | |
435 |
576 |
600 |
25 |
24 |
1 |
? |
? R#436*,AG(2,24) | |
436 |
601 |
601 |
25 |
25 |
1 |
? |
- PG(2,24) | |
437 |
301 |
301 |
25 |
25 |
2 |
? |
- | |
438 |
201 |
201 |
25 |
25 |
3 |
? |
- | |
439 |
151 |
151 |
25 |
25 |
4 |
0 |
-×1 | |
440 |
121 |
121 |
25 |
25 |
5 |
≥ 1 |
- [1773] |
II.6.47 |
441 |
101 |
101 |
25 |
25 |
6 |
≥ 1 |
- |
VI.18.73 |
442 |
76 |
76 |
25 |
25 |
8 |
0 |
-×1 | |
443 |
61 |
61 |
25 |
25 |
10 |
≥ 24 |
- [1720] |
II.6.47 |
444 |
51 |
51 |
25 |
25 |
12 |
≥ 1 |
- [1999] |
V.1.39 |
445 |
27 |
234 |
26 |
3 |
2 |
≥ 1011 |
≥ 910 2#86,D#511* | |
446 |
40 |
260 |
26 |
4 |
2 |
≥ 106 |
≥ 1 2#87 | |
447 |
14 |
91 |
26 |
4 |
6 |
≥ 4 |
II.5.29 |
|
448 |
105 |
546 |
26 |
5 |
1 |
≥ 1 |
≥ 1 [41] |
IV.2.2 |
449 |
66 |
286 |
26 |
6 |
2 |
≥ 1 |
≥ 1 2#88 [958] | |
450 |
27 |
117 |
26 |
6 |
5 |
≥ 1 |
- D#512* [1042] |
VI.16.86 |
451 |
14 |
52 |
26 |
7 |
12 |
≥ 1363846 |
1363486 2#89 [1264] | |
452 |
92 |
299 |
26 |
8 |
2 |
≥ 1 |
- [19] | |
453 |
27 |
78 |
26 |
9 |
8 |
≥ 8072 |
≥ 13 2#90,D#513 | |
454 |
235 |
611 |
26 |
10 |
1 |
? |
- | |
455 |
40 |
104 |
26 |
10 |
6 |
≥ 1 |
? 2#91* [1] | |
456 |
66 |
156 |
26 |
11 |
4 |
≥ 494 |
? 2#92 [1224] | |
457 |
144 |
312 |
26 |
12 |
2 |
≥ 1 |
? 2#93* [528] |
IV.2.67 |
458 |
313 |
626 |
26 |
13 |
1 |
? |
- | |
459 |
157 |
314 |
26 |
13 |
2 |
? |
- 2#94* | |
460 |
105 |
210 |
26 |
13 |
3 |
? |
- | |
461 |
79 |
158 |
26 |
13 |
4 |
≥ 940 |
- 2#95 [1224] | |
462 |
53 |
106 |
26 |
13 |
6 |
≥ 1 |
- 2#96* [2144] |
VI.16.30 |
463 |
40 |
80 |
26 |
13 |
8 |
≥ 390 |
- 2#97 | |
464 |
27 |
54 |
26 |
13 |
12 |
≥ 208311 |
- 2#98,D#514 | |
465 |
40 |
65 |
26 |
16 |
10 |
≥ 1 |
- R#472 [2067] | |
466 |
105 |
130 |
26 |
21 |
5 |
? |
0 R#471*,×3 | |
467 |
300 |
325 |
26 |
24 |
2 |
0 |
- R#470*,×2 | |
468 |
625 |
650 |
26 |
25 |
1 |
≥ 33 |
≥ 33 R#469,AG(2,25) [1251] | |
469 |
651 |
651 |
26 |
26 |
1 |
≥ 17 |
- PG(2,25) [1251] |
VI.18.73 |
470 |
326 |
326 |
26 |
26 |
2 |
0 |
- ×1 | |
471 |
131 |
131 |
26 |
26 |
5 |
? |
- | |
472 |
66 |
66 |
26 |
26 |
10 |
≥ 588 |
II.6.47 |
|
473 |
55 |
495 |
27 |
3 |
1 |
≥ 6 · 1076 |
- [1463] |
VI.16.12 |
474 |
28 |
252 |
27 |
3 |
2 |
≥ 1055 |
- D#564* [1548] |
VI.16.13 |
475 |
19 |
171 |
27 |
3 |
3 |
≥ 1017 |
- 3#29 [1548] | |
476 |
10 |
90 |
27 |
3 |
6 |
≥ 1012 |
- 3#30 [1548] | |
477 |
7 |
63 |
27 |
3 |
9 |
17785 | ||
478 |
28 |
189 |
27 |
4 |
3 |
≥ 1032 |
≥ 1026 3#32,D#565* [1548] | |
479 |
55 |
297 |
27 |
5 |
2 |
≥ 1 |
IV.2.67 |
|
480 |
10 |
54 |
27 |
5 |
12 |
≥ 108 |
0 3#33 [1548] | |
481 |
136 |
612 |
27 |
6 |
1 |
≥ 1 |
- [1610] |
II.3.32 |
482 |
46 |
207 |
27 |
6 |
3 |
≥ 1028 |
VI.16.90 |
|
483 |
28 |
126 |
27 |
6 |
5 |
≥ 2 |
- D#566* [2130] |
VI.16.18 |
484 |
16 |
72 |
27 |
6 |
9 |
≥ 18921 |
- 3#35 | |
485 |
28 |
108 |
27 |
7 |
6 |
≥ 5047 |
VI.16.87 |
|
486 |
64 |
216 |
27 |
8 |
3 |
≥ 1077 |
≥ 1077 3#37 [1548] | |
487 |
217 |
651 |
27 |
9 |
1 |
? |
- | |
488 |
109 |
327 |
27 |
9 |
2 |
≥ 1 |
- [1548] |
VI.16.57 |
489 |
73 |
219 |
27 |
9 |
3 |
≥ 1090 |
- 3#38 [1548] | |
490 |
55 |
165 |
27 |
9 |
4 |
≥ 1 |
-[1] |
VI.16.30 |
491 |
37 |
111 |
27 |
9 |
6 |
≥ 1037 |
- 3#39 [1548] | |
492 |
28 |
84 |
27 |
9 |
8 |
≥ 3 |
II.7.48 |
|
493 |
25 |
75 |
27 |
9 |
9 |
≥ 1028 |
- 3#40 [1548] | |
494 |
19 |
57 |
27 |
9 |
12 |
≥ 1016 |
- 3#41 [1548] | |
495 |
55 |
135 |
27 |
11 |
5 |
? |
? | |
496 |
100 |
225 |
27 |
12 |
3 |
? |
- | |
497 |
28 |
63 |
27 |
12 |
11 |
≥ 246 | ||
498 |
325 |
675 |
27 |
13 |
1 |
? |
? | |
499 |
28 |
54 |
27 |
14 |
13 |
≥ 9 · 1021 | ||
500 |
190 |
342 |
27 |
15 |
2 |
? |
- | |
501 |
55 |
99 |
27 |
15 |
7 |
? |
- | |
502 |
460 |
690 |
27 |
18 |
1 |
? |
- | |
503 |
154 |
231 |
27 |
18 |
3 |
? |
- | |
504 |
52 |
78 |
27 |
18 |
9 |
≥ 2 |
- R#513 [957] | |
505 |
91 |
117 |
27 |
21 |
6 |
? |
- R#512* | |
506 |
208 |
234 |
27 |
24 |
3 |
? |
- R#511* | |
507 |
325 |
351 |
27 |
25 |
2 |
? |
0 R#510*,×3 | |
508 |
676 |
702 |
27 |
26 |
1 |
? |
? R#509*,AG(2,26) | |
509 |
703 |
703 |
27 |
27 |
1 |
? |
- PG(2,26) | |
510 |
352 |
352 |
27 |
27 |
2 |
? |
- | |
511 |
235 |
235 |
27 |
27 |
3 |
0 |
-×1 | |
512 |
118 |
118 |
27 |
27 |
6 |
0 |
-×1 | |
513 |
79 |
79 |
27 |
27 |
9 |
≥ 1463 |
- [1087] |
II.6.47 |
514 |
55 |
55 |
27 |
27 |
13 |
≥ 1 |
V.1.28 |
|
515 |
57 |
532 |
28 |
3 |
1 |
≥ 1090 |
≥ 1 [1042] |
VI.16.12 |
516 |
15 |
140 |
28 |
3 |
4 |
≥ 1015 |
≥ 1011 4#14 [1548] | |
517 |
9 |
84 |
28 |
3 |
7 |
≥ 330 |
≥ 9 7#2 | |
518 |
85 |
595 |
28 |
4 |
1 |
≥ 1015 |
VI.16.14 |
|
519 |
43 |
301 |
28 |
4 |
2 |
≥ 1 |
- |
VI.16.15 |
520 |
29 |
203 |
28 |
4 |
3 |
≥ 1 |
- D#586* |
II.7.46 |
521 |
22 |
154 |
28 |
4 |
4 |
≥ 7922 |
- 2#100 | |
522 |
15 |
105 |
28 |
4 |
6 |
≥ 31300 |
- [127] |
VI.16.15 |
523 |
13 |
91 |
28 |
4 |
7 |
≥ 108 |
- 7#3 [1548] | |
524 |
8 |
56 |
28 |
4 |
12 |
≥ 2310 | ||
525 |
15 |
84 |
28 |
5 |
8 |
≥ 104 |
≥ 1 4#16*,2#102 [1] | |
526 |
141 |
658 |
28 |
6 |
1 |
≥ 1 |
- [1605] | |
527 |
36 |
168 |
28 |
6 |
4 |
≥ 5 |
≥ 3 4#17*,2#103 | |
528 |
21 |
98 |
28 |
6 |
7 |
≥ 1 |
- #75+#153 | |
529 |
15 |
70 |
28 |
6 |
10 |
≥ 118 |
- 2#104 | |
530 |
169 |
676 |
28 |
7 |
1 |
≥ 1 |
VI.16.65 |
|
531 |
85 |
340 |
28 |
7 |
2 |
≥ 2 |
VI.16.30 |
|
532 |
57 |
228 |
28 |
7 |
3 |
≥ 1 |
- [1042] |
VI.16.30 |
533 |
43 |
172 |
28 |
7 |
4 |
≥ 4 |
- 4#18*,2#106 | |
534 |
29 |
116 |
28 |
7 |
6 |
≥ 1 |
- 2#107,D#587* | |
535 |
25 |
100 |
28 |
7 |
7 |
≥ 1 |
- [2144] |
VI.16.31 |
536 |
22 |
88 |
28 |
7 |
8 |
≥ 35 |
- 4#19*,2#108 | |
537 |
15 |
60 |
28 |
7 |
12 |
- 4#20 [1548] | ||
538 |
50 |
175 |
28 |
8 |
4 |
≥ 1 |
-[1] |
VI.16.89 |
539 |
225 |
700 |
28 |
9 |
1 |
? |
? | |
540 |
85 |
238 |
28 |
10 |
3 |
? |
- | |
541 |
309 |
721 |
28 |
12 |
1 |
? |
- | |
542 |
78 |
182 |
28 |
12 |
4 |
? |
- 2#110* | |
543 |
45 |
105 |
28 |
12 |
7 |
≥ 1 |
- #84+#163 | |
544 |
169 |
364 |
28 |
13 |
2 |
≥ 765 |
≥ 765 2#111 [1225] | |
545 |
365 |
730 |
28 |
14 |
1 |
? |
- | |
546 |
183 |
366 |
28 |
14 |
2 |
≥ 109 |
- 2#112 [1239] | |
547 |
92 |
184 |
28 |
14 |
4 |
? |
- 2#113* | |
548 |
53 |
106 |
28 |
14 |
7 |
≥ 1 |
- [2144] |
VI.16.30 |
549 |
29 |
58 |
28 |
14 |
13 |
≥ 1 |
- D#588 [2144] | |
550 |
36 |
63 |
28 |
16 |
12 |
≥ 8784 | ||
551 |
477 |
742 |
28 |
18 |
1 |
? |
- | |
552 |
57 |
84 |
28 |
19 |
9 |
? |
0 R#568*,×3 | |
553 |
561 |
748 |
28 |
21 |
1 |
? |
- | |
554 |
141 |
188 |
28 |
21 |
4 |
? |
- | |
555 |
81 |
108 |
28 |
21 |
7 |
≥ 1 |
- R#567 | |
556 |
57 |
76 |
28 |
21 |
10 |
? |
- | |
557 |
99 |
126 |
28 |
22 |
6 |
? |
- R#566* | |
558 |
162 |
189 |
28 |
24 |
4 |
? |
- R#565* | |
559 |
225 |
252 |
28 |
25 |
3 |
? |
0 R#564*,×3 | |
560 |
351 |
378 |
28 |
26 |
2 |
0 |
- R#563*,×2 | |
561 |
729 |
756 |
28 |
27 |
1 |
≥ 7 |
≥ 7 R#562,AG(2,27) [1251] | |
562 |
757 |
757 |
28 |
28 |
1 |
≥ 3 |
- PG(2,27) [679] |
VI.18.73 |
563 |
379 |
379 |
28 |
28 |
2 |
0 |
-×1 | |
564 |
253 |
253 |
28 |
28 |
3 |
? |
- | |
565 |
190 |
190 |
28 |
28 |
4 |
0 |
-×1 | |
566 |
127 |
127 |
28 |
28 |
6 |
? |
- | |
567 |
109 |
109 |
28 |
28 |
7 |
≥ 1 |
- |
VI.18.73 |
568 |
85 |
85 |
28 |
28 |
9 |
? |
- | |
569 |
64 |
64 |
28 |
28 |
12 |
≥ 8784 |
- [710] |
VI.18.73 |
570 |
30 |
290 |
29 |
3 |
2 |
≥ 2 · 1051 |
VI.16.81 |
|
571 |
88 |
638 |
29 |
4 |
1 |
≥ 2 |
IV.2.2 |
|
572 |
30 |
174 |
29 |
5 |
4 |
≥ 1 |
VI.16.85 |
|
573 |
30 |
145 |
29 |
6 |
5 |
≥ 1 |
VI.16.86 |
|
574 |
175 |
725 |
29 |
7 |
1 |
≥ 1 |
? [1184] |
VI.16.31 |
575 |
117 |
377 |
29 |
9 |
2 |
≥ 1 |
? [1034] |
VI.16.70 |
576 |
30 |
87 |
29 |
10 |
9 |
≥ 1 |
? D#658* [1] |
VI.16.88 |
577 |
117 |
261 |
29 |
13 |
3 |
? |
? | |
578 |
378 |
783 |
29 |
14 |
1 |
? |
? | |
579 |
30 |
58 |
29 |
15 |
14 |
≥ 1 | ||
580 |
88 |
116 |
29 |
22 |
7 |
? |
0 R#587*,×3 | |
581 |
175 |
203 |
29 |
25 |
4 |
? |
0 R#586*,×3 | |
582 |
378 |
406 |
29 |
27 |
2 |
? |
0 R#585*,×3 | |
583 |
784 |
812 |
29 |
28 |
1 |
? |
? R#584*,AG(2,28) | |
584 |
813 |
813 |
29 |
29 |
1 |
? |
- PG(2,28) | |
585 |
407 |
407 |
29 |
29 |
2 |
? |
- | |
586 |
204 |
204 |
29 |
29 |
4 |
? |
- | |
587 |
117 |
117 |
29 |
29 |
7 |
0 |
-×1 | |
588 |
59 |
59 |
29 |
29 |
14 |
≥ 1 |
- |
VI.18.73 |
589 |
61 |
610 |
30 |
3 |
1 |
≥ 2 · 1024 |
VI.16.12 |
|
590 |
31 |
310 |
30 |
3 |
2 |
≥ 6 · 1016 |
- 2#114,D#677* | |
591 |
21 |
210 |
30 |
3 |
3 |
≥ 1024 |
≥ 1021 3#42 [1548] | |
592 |
16 |
160 |
30 |
3 |
4 |
≥ 1013 |
- 2#115 | |
593 |
13 |
130 |
30 |
3 |
5 |
≥ 108 |
- 5#8 [1548] | |
594 |
11 |
110 |
30 |
3 |
6 |
≥ 436801 |
- 2#116 | |
595 |
7 |
70 |
30 |
3 |
10 |
54613 |
- 10#1 [1545] | |
596 |
6 |
60 |
30 |
3 |
12 |
34 | ||
597 |
46 |
345 |
30 |
4 |
2 |
≥ 1 |
- [1042] |
VI.16.15 |
598 |
16 |
120 |
30 |
4 |
6 |
≥ 1015 |
≥ 1015 6#5 [1548] | |
599 |
10 |
75 |
30 |
4 |
10 |
≥ 29638 |
- 5#10 [1548] | |
600 |
121 |
726 |
30 |
5 |
1 |
≥ 1 |
- [1042] |
VI.16.62 |
601 |
61 |
366 |
30 |
5 |
2 |
≥ 11 |
- 2#120 | |
602 |
41 |
246 |
30 |
5 |
3 |
≥ 1046 |
- 3#45 | |
603 |
31 |
186 |
30 |
5 |
4 |
≥ 1 |
- 2#121,D#678* | |
604 |
25 |
150 |
30 |
5 |
5 |
≥ 1017 |
≥ 1017 5#11 [1548] | |
605 |
21 |
126 |
30 |
5 |
6 |
≥ 1024 |
- 6#6 [1548] | |
606 |
16 |
96 |
30 |
5 |
8 |
≥ 12 |
- 2#123 | |
607 |
13 |
78 |
30 |
5 |
10 |
≥ 31 |
- 2#124 | |
608 |
11 |
66 |
30 |
5 |
12 |
≥ 106 |
- 6#7 [1548] | |
609 |
151 |
755 |
30 |
6 |
1 |
≥ 1 |
VI.16.54 |
|
610 |
76 |
380 |
30 |
6 |
2 |
≥ 1 |
- 2#126 | |
611 |
51 |
255 |
30 |
6 |
3 |
≥ 1 |
- 3#48* [1042] |
VI.16.18 |
612 |
31 |
155 |
30 |
6 |
5 |
≥ 1023 |
- 5#12,D#679 [1548] | |
613 |
26 |
130 |
30 |
6 |
6 |
≥ 1 |
- 2#127 | |
614 |
16 |
80 |
30 |
6 |
10 |
≥ 108 |
- 5#13 [1548] | |
615 |
91 |
390 |
30 |
7 |
2 |
≥ 3 |
? 2#129 | |
616 |
21 |
90 |
30 |
7 |
9 |
≥ 1018 |
≥ 1 3#49 [1] | |
617 |
36 |
135 |
30 |
8 |
6 |
≥ 3 | ||
618 |
16 |
60 |
30 |
8 |
14 |
≥ 9 · 107 |
≥ 6 2#130 | |
619 |
81 |
270 |
30 |
9 |
3 |
≥ 10108 |
≥ 10108 3#51 [1548] | |
620 |
21 |
70 |
30 |
9 |
12 |
≥ 104 |
- 2#131 | |
621 |
271 |
813 |
30 |
10 |
1 |
? |
- | |
622 |
136 |
408 |
30 |
10 |
2 |
? |
- 2#132* | |
623 |
91 |
273 |
30 |
10 |
3 |
≥ 10125 |
- 3#52 [1548] | |
624 |
55 |
165 |
30 |
10 |
5 |
≥ 2 |
- [1034] |
VI.16.30 |
625 |
46 |
138 |
30 |
10 |
6 |
≥ 1 |
- 2#133*,3#53* [1] | |
626 |
31 |
93 |
30 |
10 |
9 |
≥ 152 |
- 3#54,D#680* | |
627 |
28 |
84 |
30 |
10 |
10 |
≥ 5 |
II.7.48 |
|
628 |
166 |
415 |
30 |
12 |
2 |
? |
- | |
629 |
56 |
140 |
30 |
12 |
6 |
≥ 5 |
- 2#135 | |
630 |
34 |
85 |
30 |
12 |
10 |
≥ 1 |
- [1628] |
VI.16.30 |
631 |
91 |
210 |
30 |
13 |
4 |
? |
? 2#136* | |
632 |
196 |
420 |
30 |
14 |
2 |
? |
? 2#137* | |
633 |
421 |
842 |
30 |
15 |
1 |
? |
- | |
634 |
211 |
422 |
30 |
15 |
2 |
? |
- 2#138* | |
635 |
141 |
282 |
30 |
15 |
3 |
? |
- | |
636 |
106 |
212 |
30 |
15 |
4 |
? |
- 2#139* | |
637 |
85 |
170 |
30 |
15 |
5 |
? |
- | |
638 |
71 |
142 |
30 |
15 |
6 |
≥ 9 |
- 2#140 | |
639 |
61 |
122 |
30 |
15 |
7 |
≥ 1 |
- [2144] |
VI.16.30 |
640 |
43 |
86 |
30 |
15 |
10 |
≥ 1 |
- 2#141* [1042] |
VI.16.30 |
641 |
36 |
72 |
30 |
15 |
12 |
≥ 25635 |
- 2#142 | |
642 |
31 |
62 |
30 |
15 |
14 |
≥ 106 |
- 2#143,D#681 | |
643 |
171 |
285 |
30 |
18 |
3 |
? |
- | |
644 |
286 |
429 |
30 |
20 |
2 |
? |
- | |
645 |
96 |
144 |
30 |
20 |
6 |
? |
- | |
646 |
58 |
87 |
30 |
20 |
10 |
? |
- R#658* | |
647 |
301 |
430 |
30 |
21 |
2 |
? |
- | |
648 |
116 |
145 |
30 |
24 |
6 |
? |
- R#657* | |
649 |
145 |
174 |
30 |
25 |
5 |
≥ 1 |
- R#656 [1839] | |
650 |
261 |
290 |
30 |
27 |
3 |
? |
- R#655* | |
651 |
406 |
435 |
30 |
28 |
2 |
0 |
- R#654*,×2 | |
652 |
841 |
870 |
30 |
29 |
1 |
≥ 1 |
≥ 1 R#653,AG(2,29) | |
653 |
871 |
871 |
30 |
30 |
1 |
≥ 1 |
- PG(2,29) |
VI.18.73 |
654 |
436 |
436 |
30 |
30 |
2 |
0 |
-×1 | |
655 |
291 |
291 |
30 |
30 |
3 |
? |
- | |
656 |
175 |
175 |
30 |
30 |
5 |
≥ 2 |
VI.18.73 |
|
657 |
146 |
146 |
30 |
30 |
6 |
0 |
-×1 | |
658 |
88 |
88 |
30 |
30 |
10 |
0 |
-×1 | |
659 |
63 |
651 |
31 |
3 |
1 |
≥ 1042 |
VI.16.12 |
|
660 |
32 |
248 |
31 |
4 |
3 |
≥ 1 |
VI.16.83 |
|
661 |
125 |
775 |
31 |
5 |
1 |
≥ 1 9 · 1097 |
≥ 5 2 · 10109 AG(3,5) [1546] |
IV.2.2 |
662 |
156 |
806 |
31 |
6 |
1 |
≥ 1 6 · 10116 |
≥ 1 PG(3,5) [1546] |
IV.2.2 |
663 |
63 |
279 |
31 |
7 |
3 |
≥ 1 |
VI.16.87 |
|
664 |
32 |
124 |
31 |
8 |
7 |
≥ 1 |
VI.16.87 |
|
665 |
63 |
217 |
31 |
9 |
4 |
≥ 1 |
≥ 1 [1] |
VI.16.87 |
666 |
280 |
868 |
31 |
10 |
1 |
? |
? | |
667 |
435 |
899 |
31 |
15 |
1 |
? |
? | |
668 |
32 |
62 |
31 |
16 |
15 |
≥ 1028 |
≥ 1 R#681,AG4(5,2),HD [1319] | |
669 |
63 |
93 |
31 |
21 |
10 |
≥ 1017 | ||
670 |
125 |
155 |
31 |
25 |
6 |
≥ 1012 |
≥ 1012 R#679,AG2(3, 5) [1223] | |
671 |
156 |
186 |
31 |
26 |
5 |
? |
0 R#678*,×3 | |
672 |
280 |
310 |
31 |
28 |
3 |
? |
0 R#677*,×3 | |
673 |
435 |
465 |
31 |
29 |
2 |
0 |
0 R#676*,×2 | |
674 |
900 |
930 |
31 |
30 |
1 |
0 |
0 R#675*,×2,AG(2,30) | |
675 |
931 |
931 |
31 |
31 |
1 |
0 |
- ×1,PG(2,30) | |
676 |
466 |
466 |
31 |
31 |
2 |
0 |
-×1 | |
677 |
311 |
311 |
31 |
31 |
3 |
? |
- | |
678 |
187 |
187 |
31 |
31 |
5 |
0 |
-×1 | |
679 |
156 |
156 |
31 |
31 |
6 |
≥ 1017 |
-PG2(3, 5) [1223] |
VI.18.73 |
680 |
94 |
94 |
31 |
31 |
10 |
0 |
-×1 | |
681 |
63 |
63 |
31 |
31 |
15 |
≥ 1017 |
-PG4(5, 2) [1223] |
VI.18.73 |
682 |
33 |
352 |
32 |
3 |
2 |
≥ 1013 |
≥ 4.4 · 106 2#144,D#775* [562] | |
683 |
9 |
96 |
32 |
3 |
8 |
≥ 107 |
≥ 105 8#2 [1548] | |
684 |
97 |
776 |
32 |
4 |
1 |
≥ 5985 |
VI.16.61 |
|
685 |
49 |
392 |
32 |
4 |
2 |
≥ 770 |
- 2#146 [396] | |
686 |
33 |
264 |
32 |
4 |
3 |
≥ 1 |
- D#776* [1042] |
II.7.46 |
687 |
25 |
200 |
32 |
4 |
4 |
≥ 1022 |
- 4#22 [1548] | |
688 |
17 |
136 |
32 |
4 |
6 |
≥ 1 |
- 2#148 | |
689 |
13 |
104 |
32 |
4 |
8 |
≥ 108 |
- 8#3 [1548] | |
690 |
9 |
72 |
32 |
4 |
12 |
≥ 108 |
- 4#24 [1548] | |
691 |
65 |
416 |
32 |
5 |
2 |
≥ 3 |
≥ 1 2#151 | |
692 |
81 |
432 |
32 |
6 |
2 |
≥ 1 |
- 2#152* [1042] |
IV.2.7 |
693 |
33 |
176 |
32 |
6 |
5 |
≥ 1 |
- D#777* [1042] |
VI.16.18 |
694 |
21 |
112 |
32 |
6 |
8 |
≥ 1 |
- 4#25*,2#153 | |
695 |
49 |
224 |
32 |
7 |
4 |
≥ 1052 |
≥ 1052 4#26 [1548] | |
696 |
225 |
900 |
32 |
8 |
1 |
? |
- | |
697 |
113 |
452 |
32 |
8 |
2 |
≥ 1 |
- 2#155* [957] |
VI.16.64 |
698 |
57 |
228 |
32 |
8 |
4 |
≥ 1063 |
- 4#27 [1548] | |
699 |
33 |
132 |
32 |
8 |
7 |
≥ 1 |
- D#778 [1042] |
II.7.46 |
700 |
29 |
116 |
32 |
8 |
8 |
≥ 3 |
- 4#28*,2#157 | |
701 |
17 |
68 |
32 |
8 |
14 |
≥ 12 |
- 2#158 | |
702 |
145 |
464 |
32 |
10 |
2 |
? |
- 2#159* | |
703 |
25 |
80 |
32 |
10 |
12 |
≥ 44 |
- 2#160 | |
704 |
33 |
96 |
32 |
11 |
10 |
≥ 20 |
? 2#161,D#779* | |
705 |
177 |
472 |
32 |
12 |
2 |
? |
- 2#162* | |
706 |
45 |
120 |
32 |
12 |
8 |
≥ 1 |
- 2#163 | |
707 |
33 |
88 |
32 |
12 |
11 |
≥ 1 |
- D#780* [1042] | |
708 |
65 |
160 |
32 |
13 |
6 |
? |
? 2#164* | |
709 |
105 |
240 |
32 |
14 |
4 |
? |
- 2#165* | |
710 |
225 |
480 |
32 |
15 |
2 |
? |
? 2#166* | |
711 |
481 |
962 |
32 |
16 |
1 |
? |
- | |
712 |
241 |
482 |
32 |
16 |
2 |
? |
- 2#167* | |
713 |
161 |
322 |
32 |
16 |
3 |
? |
- | |
714 |
121 |
242 |
32 |
16 |
4 |
≥ 1 |
- 2#168* [1] |
VI.16.31 |
715 |
97 |
194 |
32 |
16 |
5 |
? |
- | |
716 |
81 |
162 |
32 |
16 |
6 |
? |
- 2#169* | |
717 |
61 |
122 |
32 |
16 |
8 |
≥ 1 |
- 2#170 | |
718 |
49 |
98 |
32 |
16 |
10 |
≥ 45 |
- 2#171 | |
719 |
41 |
82 |
32 |
16 |
12 |
≥ 115308 |
- 2#172 | |
720 |
33 |
66 |
32 |
16 |
15 |
≥ 1 |
- D#781 [2110] | |
721 |
305 |
488 |
32 |
20 |
2 |
? |
- | |
722 |
369 |
492 |
32 |
24 |
2 |
? |
- | |
723 |
93 |
124 |
32 |
24 |
8 |
? |
- R#730* | |
724 |
217 |
248 |
32 |
28 |
4 |
? |
- R#729* | |
725 |
465 |
496 |
32 |
30 |
2 |
0 |
- R#728*,×2 | |
726 |
961 |
992 |
32 |
31 |
1 |
≥ 1 |
≥ 1 R#727,AG(2,31) | |
727 |
993 |
993 |
32 |
32 |
1 |
≥ 1 |
- PG(2,31) |
VI.18.82 |
728 |
497 |
497 |
32 |
32 |
2 |
0 |
-×1 | |
729 |
249 |
249 |
32 |
32 |
4 |
? |
- | |
730 |
125 |
125 |
32 |
32 |
8 |
0 |
-×1 | |
731 |
67 |
737 |
33 |
3 |
1 |
≥ 1035 |
VI.16.12 |
|
732 |
34 |
374 |
33 |
3 |
2 |
≥ 1041 |
- D#811* [1548] |
VI.16.81 |
733 |
23 |
253 |
33 |
3 |
3 |
≥ 2 · 1014 |
- [1548] |
VI.16.24 |
734 |
12 |
132 |
33 |
3 |
6 |
≥ 108 |
≥ 1 3#55 [1548] | |
735 |
7 |
77 |
33 |
3 |
11 |
155118 |
-[1545] | |
736 |
100 |
825 |
33 |
4 |
1 |
≥ 5985 |
IV.2.2 |
|
737 |
12 |
99 |
33 |
4 |
9 |
≥ 1010 |
≥ 1 3#56 | |
738 |
45 |
297 |
33 |
5 |
3 |
≥ 1054 | ||
739 |
166 |
913 |
33 |
6 |
1 |
? |
- | |
740 |
56 |
308 |
33 |
6 |
3 |
≥ 1 |
- [1042] |
IV.2.7 |
741 |
34 |
187 |
33 |
6 |
5 |
≥ 1 |
- D#812* [1042] |
VI.16.86 |
742 |
16 |
88 |
33 |
6 |
11 |
≥ 1 |
- #13+#484 | |
743 |
12 |
66 |
33 |
6 |
15 |
≥ 11604 |
≥ 12 3#58 | |
744 |
232 |
957 |
33 |
8 |
1 |
≥ 1 |
≥ 1 [688] | |
745 |
45 |
165 |
33 |
9 |
6 |
≥ 35805 |
? 3#59 [1224] | |
746 |
100 |
330 |
33 |
10 |
3 |
≥ 1 |
? 3#60* [528] |
IV.2.67 |
747 |
331 |
993 |
33 |
11 |
1 |
? |
- | |
748 |
166 |
498 |
33 |
11 |
2 |
? |
- | |
749 |
111 |
333 |
33 |
11 |
3 |
≥ 1 |
- 3#61* [528] |
IV.2.67 |
750 |
67 |
201 |
33 |
11 |
5 |
≥ 1 |
- [2144] |
VI.16.30 |
751 |
56 |
168 |
33 |
11 |
6 |
≥ 1071 |
- 3#62 [1548] | |
752 |
34 |
102 |
33 |
11 |
10 |
≥ 1 |
- D#813* [1042] |
VI.16.88 |
753 |
31 |
93 |
33 |
11 |
11 |
≥ 1 |
- [1042] |
II.7.46 |
754 |
23 |
69 |
33 |
11 |
15 |
≥ 1103 |
- 3#63 | |
755 |
364 |
1001 |
33 |
12 |
1 |
? |
- | |
756 |
155 |
341 |
33 |
15 |
3 |
? |
- | |
757 |
496 |
1023 |
33 |
16 |
1 |
≥ 1 |
≥ 1 [1877] | |
758 |
34 |
66 |
33 |
17 |
16 |
≥ 1 | ||
759 |
133 |
209 |
33 |
21 |
5 |
? |
- | |
760 |
56 |
88 |
33 |
21 |
12 |
? |
- R#780* | |
761 |
694 |
1041 |
33 |
22 |
1 |
? |
- | |
762 |
232 |
348 |
33 |
22 |
3 |
? |
- | |
763 |
100 |
150 |
33 |
22 |
7 |
? |
- | |
764 |
78 |
117 |
33 |
22 |
9 |
? |
- | |
765 |
64 |
96 |
33 |
22 |
11 |
? |
- R#779* | |
766 |
760 |
1045 |
33 |
24 |
1 |
? |
- | |
767 |
100 |
132 |
33 |
25 |
8 |
≥ 1 | ||
768 |
144 |
176 |
33 |
27 |
6 |
? |
- R#777* | |
769 |
232 |
264 |
33 |
29 |
4 |
? |
0 R#776*,×3 | |
770 |
320 |
352 |
33 |
30 |
3 |
? |
- R#775* | |
771 |
496 |
528 |
33 |
31 |
2 |
? |
0 R#774*,×3 | |
772 |
1024 |
1056 |
33 |
32 |
1 |
≥ 11 |
≥ 11 R#773,AG(2,32) [679] | |
773 |
1057 |
1057 |
33 |
33 |
1 |
≥ 6 |
- PG(2,32) [679] |
VI.18.28 |
774 |
529 |
529 |
33 |
33 |
2 |
? |
- | |
775 |
353 |
353 |
33 |
33 |
3 |
0 |
-×1 | |
776 |
265 |
265 |
33 |
33 |
4 |
? |
- | |
777 |
177 |
177 |
33 |
33 |
6 |
? |
- | |
778 |
133 |
133 |
33 |
33 |
8 |
≥ 1 |
- [1013] |
VI.18.73 |
779 |
97 |
97 |
33 |
33 |
11 |
? |
- | |
780 |
89 |
89 |
33 |
33 |
12 |
0 |
-×1 | |
781 |
67 |
67 |
33 |
33 |
16 |
≥ 1 |
- [2110] |
VI.18.73 |
782 |
69 |
782 |
34 |
3 |
1 |
≥ 4 · 1041 |
VI.16.12 |
|
783 |
18 |
204 |
34 |
3 |
4 |
≥ 4 · 1014 |
≥ 1 2#173 | |
784 |
52 |
442 |
34 |
4 |
2 |
≥ 207 |
≥ 1 2#174 | |
785 |
18 |
153 |
34 |
4 |
6 |
≥ 1 |
- [1042] |
VI.16.84 |
786 |
35 |
238 |
34 |
5 |
4 |
≥ 2 |
≥ 2 2#175,D#869* | |
787 |
171 |
969 |
34 |
6 |
1 |
≥ 1 |
- [46] |
II.3.32 |
788 |
18 |
102 |
34 |
6 |
10 |
≥ 4 |
≥ 3 2#176 | |
789 |
35 |
170 |
34 |
7 |
6 |
≥ 3 |
≥ 1 2#177,D#870* [43] |
VI.16.87 |
790 |
120 |
510 |
34 |
8 |
2 |
≥ 1 |
≥ 1 2#178 | |
791 |
18 |
68 |
34 |
9 |
16 |
≥ 103 |
≥ 1 2#179 | |
792 |
35 |
119 |
34 |
10 |
9 |
≥ 1 |
- D#871* [1042] | |
793 |
341 |
1054 |
34 |
11 |
1 |
? |
? | |
794 |
52 |
136 |
34 |
13 |
8 |
≥ 1 |
? 2#180 | |
795 |
35 |
85 |
34 |
14 |
13 |
≥ 1 |
- D#872* [1] | |
796 |
120 |
272 |
34 |
15 |
4 |
? |
? 2#181* | |
797 |
256 |
544 |
34 |
16 |
2 |
≥477603 |
≥477603 2#182 [1225] | |
798 |
545 |
1090 |
34 |
17 |
1 |
? |
- | |
799 |
273 |
546 |
34 |
17 |
2 |
≥ 1012 |
- 2#183 [1239] | |
800 |
137 |
274 |
34 |
17 |
4 |
≥ 1 |
- 2#184* [382] | |
801 |
69 |
138 |
34 |
17 |
8 |
≥ 1 |
- 2#185 | |
802 |
35 |
70 |
34 |
17 |
16 |
≥ 1854 |
- 2#186,D#873 | |
803 |
715 |
1105 |
34 |
22 |
1 |
? |
- | |
804 |
69 |
102 |
34 |
23 |
11 |
? |
0 R#813*,×3 | |
805 |
154 |
187 |
34 |
28 |
6 |
? |
- R#812* | |
806 |
341 |
374 |
34 |
31 |
3 |
? |
0 R#811*,×3 | |
807 |
528 |
561 |
34 |
32 |
2 |
0 |
- R#810*,×2 | |
808 |
1089 |
1122 |
34 |
33 |
1 |
0 |
0 R#809*,×2,AG(2,33) | |
809 |
1123 |
1123 |
34 |
34 |
1 |
0 |
-×1 | |
810 |
562 |
562 |
34 |
34 |
2 |
0 |
-×1 | |
811 |
375 |
375 |
34 |
34 |
3 |
? |
- | |
812 |
188 |
188 |
34 |
34 |
6 |
0 |
-×1 | |
813 |
103 |
103 |
34 |
34 |
11 |
? |
- | |
814 |
36 |
420 |
35 |
3 |
2 |
≥ 2 · 1050 |
VI.16.81 |
|
815 |
15 |
175 |
35 |
3 |
5 |
≥ 1015 |
≥ 1011 5#14 [1548] | |
816 |
6 |
70 |
35 |
3 |
14 |
48 | ||
817 |
36 |
315 |
35 |
4 |
3 |
≥ 1 |
VI.16.83 |
|
818 |
16 |
140 |
35 |
4 |
7 |
≥ 1015 |
≥ 1015 7#5 [1548] | |
819 |
8 |
70 |
35 |
4 |
15 |
≥ 2224 | ||
820 |
141 |
987 |
35 |
5 |
1 |
≥ 1 |
- [1042] |
VI.16.16 |
821 |
71 |
497 |
35 |
5 |
2 |
≥ 1 |
- [1042] |
VI.16.17 |
822 |
36 |
252 |
35 |
5 |
4 |
≥ 2 |
VI.16.85 |
|
823 |
29 |
203 |
35 |
5 |
5 |
≥ 2 |
II.7.46 |
|
824 |
21 |
147 |
35 |
5 |
7 |
≥ 1024 |
- 7#6 [1548] | |
825 |
15 |
105 |
35 |
5 |
10 |
≥ 1 |
≥ 1 5#16*,#102+#280 [1] | |
826 |
11 |
77 |
35 |
5 |
14 |
≥ 106 |
- 7#7 [1548] | |
827 |
36 |
210 |
35 |
6 |
5 |
≥ 1 | ||
828 |
211 |
1055 |
35 |
7 |
1 |
? |
- | |
829 |
106 |
530 |
35 |
7 |
2 |
≥ 1 |
- [4] | |
830 |
71 |
355 |
35 |
7 |
3 |
≥ 1 |
- [2144] |
VI.16.30 |
831 |
43 |
215 |
35 |
7 |
5 |
≥ 1 |
- 5#18*,#106+#287 | |
832 |
36 |
180 |
35 |
7 |
6 |
≥ 1 |
- D#965* [1042] |
II.7.46 |
833 |
31 |
155 |
35 |
7 |
7 |
≥ 5 |
- PG2 (4, 2) [2043] |
II.7.46 |
834 |
22 |
110 |
35 |
7 |
10 |
≥ 1 |
- 5#19*,#108+#288 | |
835 |
16 |
80 |
35 |
7 |
14 |
≥ 1 |
- #131↓#259 | |
836 |
15 |
75 |
35 |
7 |
15 |
- 5#20 [1548] | ||
837 |
36 |
140 |
35 |
9 |
8 |
≥ 4 |
VI.16.87 |
|
838 |
316 |
1106 |
35 |
10 |
1 |
? |
- | |
839 |
106 |
371 |
35 |
10 |
3 |
? |
- | |
840 |
64 |
224 |
35 |
10 |
5 |
≥ 1 |
- [22] |
II.3.32 |
841 |
46 |
161 |
35 |
10 |
7 |
? |
- | |
842 |
36 |
126 |
35 |
10 |
9 |
≥ 2 | ||
843 |
22 |
77 |
35 |
10 |
15 |
≥ 1 |
- #104↓#290 | |
844 |
176 |
560 |
35 |
11 |
2 |
? |
? | |
845 |
36 |
105 |
35 |
12 |
11 |
≥ 1 |
VI.16.88 |
|
846 |
456 |
1140 |
35 |
14 |
1 |
? |
- | |
847 |
92 |
230 |
35 |
14 |
5 |
? |
- | |
848 |
66 |
165 |
35 |
14 |
7 |
? |
- | |
849 |
36 |
90 |
35 |
14 |
13 |
≥ 1 |
- D#969* [1042] | |
850 |
246 |
574 |
35 |
15 |
2 |
? |
- | |
851 |
99 |
231 |
35 |
15 |
5 |
? |
- | |
852 |
36 |
84 |
35 |
15 |
14 |
≥ 1 |
- D#970*, #142+#264 | |
853 |
176 |
385 |
35 |
16 |
3 |
? |
? | |
854 |
561 |
1155 |
35 |
17 |
1 |
? |
? | |
855 |
36 |
70 |
35 |
18 |
17 |
≥ 91 | ||
856 |
96 |
168 |
35 |
20 |
7 |
? |
- | |
857 |
351 |
585 |
35 |
21 |
2 |
? |
- | |
858 |
141 |
235 |
35 |
21 |
5 |
? |
- | |
859 |
51 |
85 |
35 |
21 |
14 |
? |
- R#872* | |
860 |
85 |
119 |
35 |
25 |
10 |
? |
- R#871* | |
861 |
316 |
395 |
35 |
28 |
3 |
? |
- | |
862 |
136 |
170 |
35 |
28 |
7 |
? |
- R#870* | |
863 |
64 |
80 |
35 |
28 |
15 |
? |
- | |
864 |
204 |
238 |
35 |
30 |
5 |
? |
- R#869* | |
865 |
561 |
595 |
35 |
33 |
2 |
0 |
0 R#868*,x2 | |
866 |
1156 |
1190 |
35 |
34 |
1 |
? |
? R#867*,AG(2,34) | |
867 |
1191 |
1191 |
35 |
35 |
1 |
? |
- PG(2,34) | |
868 |
596 |
596 |
35 |
35 |
2 |
0 |
-×1 | |
869 |
239 |
239 |
35 |
35 |
5 |
? |
- | |
870 |
171 |
171 |
35 |
35 |
7 |
? |
- | |
871 |
120 |
120 |
35 |
35 |
10 |
? |
- | |
872 |
86 |
86 |
35 |
35 |
14 |
0 |
-×1 | |
873 |
71 |
71 |
35 |
35 |
17 |
≥ 9 |
VI.18.73 |
|
874 |
73 |
876 |
36 |
3 |
1 |
≥ 1034 |
VI.16.12 |
|
875 |
37 |
444 |
36 |
3 |
2 |
≥ 1010 |
- 2#187,D#991* | |
876 |
25 |
300 |
36 |
3 |
3 |
≥ 1025 |
- 3#64 [1548] | |
877 |
19 |
228 |
36 |
3 |
4 |
≥ 1017 |
- 4#29 [1548] | |
878 |
13 |
156 |
36 |
3 |
6 |
≥ 1017 |
- 6#8 [1548] | |
879 |
10 |
120 |
36 |
3 |
8 |
≥ 1012 |
- 4#30 [1548] | |
880 |
9 |
108 |
36 |
3 |
9 |
≥ 1014 |
≥ 105 9#2 [1707] | |
881 |
7 |
84 |
36 |
3 |
12 |
412991 |
- 12#1 [1545] | |
882 |
109 |
981 |
36 |
4 |
1 |
≥ 1.6 · 1013 |
- [396] |
VI.16.61 |
883 |
55 |
495 |
36 |
4 |
2 |
≥ 1 |
- [1042] |
IV.2.7 |
884 |
37 |
333 |
36 |
4 |
3 |
≥ 1040 |
- 3#68,D#992* [1548] | |
885 |
28 |
252 |
36 |
4 |
4 |
≥ 1032 |
≥ 1026 4#32 [1548] | |
886 |
19 |
171 |
36 |
4 |
6 |
≥ 1020 |
- 3#69 | |
887 |
13 |
117 |
36 |
4 |
9 |
≥ 108 |
- 9#3 [1548] | |
888 |
10 |
90 |
36 |
4 |
12 |
≥ 109 |
- 6#10 [1548] | |
889 |
145 |
1044 |
36 |
5 |
1 |
≥ 1 |
VI.16.70 |
|
890 |
25 |
180 |
36 |
5 |
6 |
≥ 1038 |
≥ 1038 6#11 [1548] | |
891 |
10 |
72 |
36 |
5 |
16 |
≥ 108 | ||
892 |
181 |
1086 |
36 |
6 |
1 |
≥ 1 |
VI.16.54 |
|
893 |
91 |
546 |
36 |
6 |
2 |
≥ 5 |
- 2#196 | |
894 |
61 |
366 |
36 |
6 |
3 |
≥ 1 |
- 3#73* [1042] |
VI.16.18 |
895 |
46 |
276 |
36 |
6 |
4 |
≥ 1 |
- 4#34*,2#197 | |
896 |
37 |
222 |
36 |
6 |
5 |
≥ 2 |
- D#993 [1042] | |
897 |
31 |
186 |
36 |
6 |
6 |
≥ 1051 |
- 6#12 [1548] | |
898 |
21 |
126 |
36 |
6 |
9 |
≥ 1 |
-3#75 | |
899 |
19 |
114 |
36 |
6 |
10 |
≥ 1 |
- 2#199 | |
900 |
16 |
96 |
36 |
6 |
12 |
≥ 1019 |
- 6#13 [1548] | |
901 |
13 |
78 |
36 |
6 |
15 |
≥ 1011 |
- 3#77 [1548] | |
902 |
217 |
1116 |
36 |
7 |
1 |
≥ 1 |
? [1537] |
VI.16.30 |
903 |
28 |
144 |
36 |
7 |
8 |
≥ 5432 | ||
904 |
64 |
288 |
36 |
8 |
4 |
≥ 1077 |
≥ 1077 4#37 [1548] | |
905 |
22 |
99 |
36 |
8 |
12 |
≥ 1 |
- 3#78* [1042] |
VI.16.30 |
906 |
289 |
1156 |
36 |
9 |
1 |
? |
- | |
907 |
145 |
580 |
36 |
9 |
2 |
≥ 1 |
- 2#203* [959] | |
908 |
97 |
388 |
36 |
9 |
3 |
≥ 1 |
-[1] |
VI.16.30 |
909 |
73 |
292 |
36 |
9 |
4 |
≥ 1090 |
- 4#38 [1548] | |
910 |
49 |
196 |
36 |
9 |
6 |
≥ 5 |
- 2#205* [1151] | |
911 |
37 |
148 |
36 |
9 |
8 |
≥ 1037 |
- 4#39,D#994* [1548] | |
912 |
33 |
132 |
36 |
9 |
9 |
≥ 1039 |
- 3#79 |
II.7.46 |
913 |
25 |
100 |
36 |
9 |
12 |
≥ 1028 |
- 4#40 [1548] | |
914 |
19 |
76 |
36 |
9 |
16 |
≥ 1016 |
- 4#41 [1548] | |
915 |
325 |
1170 |
36 |
10 |
1 |
? |
- | |
916 |
55 |
198 |
36 |
10 |
6 |
? |
- 3#80*,2#209* | |
917 |
121 |
396 |
36 |
11 |
3 |
≥ 10188 |
≥ 10188 3#81 [1548] | |
918 |
397 |
1191 |
36 |
12 |
1 |
? |
- | |
919 |
199 |
597 |
36 |
12 |
2 |
? |
- | |
920 |
133 |
399 |
36 |
12 |
3 |
≥ 10208 |
- 3#82 [1548] | |
921 |
100 |
300 |
36 |
12 |
4 |
? |
- 2#210* | |
922 |
67 |
201 |
36 |
12 |
6 |
≥ 1 |
- 3#83* [2144] |
VI.16.30 |
923 |
45 |
135 |
36 |
12 |
9 |
≥ 1057 |
- 3#84 | |
924 |
37 |
111 |
36 |
12 |
11 |
≥ 1 |
- D#995* [1042] |
II.7.46 |
925 |
34 |
102 |
36 |
12 |
12 |
≥ 2 |
- 3#85*,2#211 |
VI.16.88 |
926 |
469 |
1206 |
36 |
14 |
1 |
? |
- | |
927 |
505 |
1212 |
36 |
15 |
1 |
? |
- | |
928 |
85 |
204 |
36 |
15 |
6 |
? |
- 2#212* | |
929 |
136 |
306 |
36 |
16 |
4 |
? |
- 2#213* | |
930 |
289 |
612 |
36 |
17 |
2 |
≥ 3481 |
≥ 3481 2#214 [1225] | |
931 |
613 |
1226 |
36 |
18 |
1 |
? |
- | |
932 |
307 |
614 |
36 |
18 |
2 |
≥ 8 · 1013 |
- 2#215 [1239] | |
933 |
205 |
410 |
36 |
18 |
3 |
? |
- | |
934 |
154 |
308 |
36 |
18 |
4 |
? |
- 2#216* | |
935 |
103 |
206 |
36 |
18 |
6 |
? |
- 2#217* | |
936 |
69 |
138 |
36 |
18 |
9 |
? |
- | |
937 |
52 |
104 |
36 |
18 |
12 |
? |
- 2#218* | |
938 |
37 |
74 |
36 |
18 |
17 |
≥ 1 |
- D#996 [1042] | |
939 |
685 |
1233 |
36 |
20 |
1 |
? |
- | |
940 |
115 |
207 |
36 |
20 |
6 |
? |
- | |
941 |
721 |
1236 |
36 |
21 |
1 |
? |
- | |
942 |
91 |
156 |
36 |
21 |
8 |
? |
- | |
943 |
49 |
84 |
36 |
21 |
15 |
? |
- R#970* | |
944 |
253 |
414 |
36 |
22 |
3 |
? |
- | |
945 |
55 |
90 |
36 |
22 |
14 |
? |
- R#969* | |
946 |
208 |
312 |
36 |
24 |
4 |
? |
- | |
947 |
70 |
105 |
36 |
24 |
12 |
? |
- R#968* | |
948 |
91 |
126 |
36 |
26 |
10 |
? |
- R#967* | |
949 |
105 |
140 |
36 |
27 |
9 |
? |
- R#966* | |
950 |
973 |
1251 |
36 |
28 |
1 |
? |
- | |
951 |
145 |
180 |
36 |
29 |
7 |
? |
0 R#965*,×3 | |
952 |
1045 |
1254 |
36 |
30 |
1 |
? |
- | |
953 |
175 |
210 |
36 |
30 |
6 |
? |
- R#964* | |
954 |
217 |
252 |
36 |
31 |
5 |
? |
0 R#963*,×3 | |
955 |
280 |
315 |
36 |
32 |
4 |
? |
- R#962* | |
956 |
385 |
420 |
36 |
33 |
3 |
? |
- R#961* | |
957 |
595 |
630 |
36 |
34 |
2 |
? |
- R#960* | |
958 |
1225 |
1260 |
36 |
35 |
1 |
? |
? R#959*,AG(2,35) | |
959 |
1261 |
1261 |
36 |
36 |
1 |
? |
- PG(2,35) | |
960 |
631 |
631 |
36 |
36 |
2 |
? |
- | |
961 |
421 |
421 |
36 |
36 |
3 |
? |
- | |
962 |
316 |
316 |
36 |
36 |
4 |
0 |
-×1 | |
963 |
253 |
253 |
36 |
36 |
5 |
? |
- | |
964 |
211 |
211 |
36 |
36 |
6 |
0 |
-×1 | |
965 |
181 |
181 |
36 |
36 |
7 |
? |
- | |
966 |
141 |
141 |
36 |
36 |
9 |
? |
- | |
967 |
127 |
127 |
36 |
36 |
10 |
? |
- | |
968 |
106 |
106 |
36 |
36 |
12 |
0 |
-×1 | |
969 |
91 |
91 |
36 |
36 |
14 |
0 |
-×1 | |
970 |
85 |
85 |
36 |
36 |
15 |
? |
- | |
971 |
75 |
925 |
37 |
3 |
1 |
≥ 10196 |
VI.16.12 |
|
972 |
112 |
1036 |
37 |
4 |
1 |
≥ 1.69 · 1013 |
IV.2.2 |
|
973 |
75 |
555 |
37 |
5 |
2 |
≥ 1 |
VI.16.31 |
|
974 |
186 |
1147 |
37 |
6 |
1 |
≥ 1 |
IV.2.2 |
|
975 |
112 |
592 |
37 |
7 |
2 |
≥ 1 |
? [1042] | |
976 |
297 |
1221 |
37 |
9 |
1 |
? |
? | |
977 |
408 |
1258 |
37 |
12 |
1 |
? |
? | |
978 |
75 |
185 |
37 |
15 |
7 |
≥ 1 |
≥ 1 [1714] | |
979 |
112 |
259 |
37 |
16 |
5 |
? |
? | |
980 |
630 |
1295 |
37 |
18 |
1 |
? |
? | |
981 |
38 |
74 |
37 |
19 |
18 |
≥ 1 | ||
982 |
75 |
111 |
37 |
25 |
12 |
? |
0 R#995*,×3 | |
983 |
112 |
148 |
37 |
28 |
9 |
? |
? R#994* | |
984 |
186 |
222 |
37 |
31 |
6 |
≥ 1 | ||
985 |
297 |
333 |
37 |
33 |
4 |
? |
0 R#992*,×3 | |
986 |
408 |
444 |
37 |
34 |
3 |
? |
0 R#991*,×3 | |
987 |
630 |
666 |
37 |
35 |
2 |
0 |
0 R#990*,×2 | |
988 |
1296 |
1332 |
37 |
36 |
1 |
? |
? R#989*,AG(2,36) | |
989 |
1333 |
1333 |
37 |
37 |
1 |
? |
- PG(2,36) | |
990 |
667 |
667 |
37 |
37 |
2 |
0 |
-×1 | |
991 |
445 |
445 |
37 |
37 |
3 |
0 |
-×1 | |
992 |
334 |
334 |
37 |
37 |
4 |
0 |
-×1 | |
993 |
223 |
223 |
37 |
37 |
6 |
≥ 1 |
- [1773] | |
994 |
149 |
149 |
37 |
37 |
9 |
? |
- | |
995 |
112 |
112 |
37 |
37 |
12 |
? |
- | |
996 |
75 |
75 |
37 |
37 |
18 |
≥ 1 |
- [1839] |
V.1.39 |
997 |
39 |
494 |
38 |
3 |
2 |
≥ 1044 |
≥ 89 2#219,D#1071* | |
998 |
58 |
551 |
38 |
4 |
2 |
≥ 1 |
- [1042] |
IV.2.7 |
999 |
20 |
190 |
38 |
4 |
6 |
≥ 1 |
≥ 4 2#220 | |
1000 |
20 |
152 |
38 |
5 |
8 |
≥ 1 |
≥ 3 2#221 | |
1001 |
96 |
608 |
38 |
6 |
2 |
≥ 1 |
≥ 1 2#222 [958] | |
1002 |
39 |
247 |
38 |
6 |
5 |
≥ 1 |
- D#1072* [1042] |
VI.16.18 |
1003 |
77 |
418 |
38 |
7 |
3 |
≥ 2 |
VI.16.70 |
|
1004 |
20 |
95 |
38 |
8 |
14 |
≥ 1 |
- [1042] |
VI.16.88 |
1005 |
153 |
646 |
38 |
9 |
2 |
≥ 1 |
VI.16.31 |
|
1006 |
115 |
437 |
38 |
10 |
3 |
? |
- | |
1007 |
20 |
76 |
38 |
10 |
18 |
≥ 1016 |
≥ 4 2#224 | |
1008 |
77 |
266 |
38 |
11 |
5 |
? |
? | |
1009 |
210 |
665 |
38 |
12 |
2 |
? |
- | |
1010 |
39 |
114 |
38 |
13 |
12 |
≥ 1 |
? 2#225*,D#1073* [1042] |
VI.16.88 |
1011 |
96 |
228 |
38 |
16 |
6 |
? |
? 2#226* | |
1012 |
153 |
342 |
38 |
17 |
4 |
? |
? 2#227* | |
1013 |
324 |
684 |
38 |
18 |
2 |
≥ 1 |
? 2#228* [528] |
IV.2.67 |
1014 |
685 |
1370 |
38 |
19 |
1 |
? |
- | |
1015 |
343 |
686 |
38 |
19 |
2 |
? |
- 2#229* | |
1016 |
229 |
458 |
38 |
19 |
3 |
? |
- | |
1017 |
172 |
344 |
38 |
19 |
4 |
? |
- 2#230* | |
1018 |
115 |
230 |
38 |
19 |
6 |
? |
- 2#231* | |
1019 |
77 |
154 |
38 |
19 |
9 |
? |
- | |
1020 |
58 |
116 |
38 |
19 |
12 |
? |
- 2#232* | |
1021 |
39 |
78 |
38 |
19 |
18 |
≥ 5 87 · 1014 |
- 2#233,D#1074 [1374] | |
1022 |
666 |
703 |
38 |
36 |
2 |
? |
- R#1025* | |
1023 |
1369 |
1406 |
38 |
37 |
1 |
≥ 1 |
≥ 1 R#1024,AG(2,37) | |
1024 |
1407 |
1407 |
38 |
38 |
1 |
≥ 1 |
- PG(2,37) |
VI.18.82 |
1025 |
704 |
704 |
38 |
38 |
2 |
? |
- | |
1026 |
79 |
1027 |
39 |
3 |
1 |
≥ 1056 |
- [1463] |
VI.16.12 |
1027 |
40 |
520 |
39 |
3 |
2 |
≥ 6 · 1024 |
- D#1163* [1548] |
VI.16.13 |
1028 |
27 |
351 |
39 |
3 |
3 |
≥ 1028 |
≥ 1030 3#86 [1548] | |
1029 |
14 |
182 |
39 |
3 |
6 |
≥ 2 · 1034 |
- [1548] |
VI.16.82 |
1030 |
7 |
91 |
39 |
3 |
13 |
1033129 |
- 13#1 [696] | |
1031 |
40 |
390 |
39 |
4 |
3 |
≥ 1033 |
≥ 1033 3#87,D#1164* [1548] | |
1032 |
40 |
312 |
39 |
5 |
4 |
≥ 1 |
VI.16.85 |
|
1033 |
196 |
1274 |
39 |
6 |
1 |
≥ 1 |
- [18] |
II.3.32 |
1034 |
66 |
429 |
39 |
6 |
3 |
≥ 1 |
≥ 1 3#88 [1833] | |
1035 |
40 |
260 |
39 |
6 |
5 |
≥ 1 |
- D#1166* [1042] |
VI.16.86 |
1036 |
16 |
104 |
39 |
6 |
13 |
≥ 1 |
- #13+#742 | |
1037 |
14 |
91 |
39 |
6 |
15 |
≥ 1 |
- [1042] |
VI.16.86 |
1038 |
14 |
78 |
39 |
7 |
18 |
≥ 1011 |
0 3#89 [1548] | |
1039 |
40 |
195 |
39 |
8 |
7 |
≥ 1 |
VI.16.87 |
|
1040 |
105 |
455 |
39 |
9 |
3 |
≥ 1 |
- [21] |
II.3.32 |
1041 |
27 |
117 |
39 |
9 |
12 |
≥ 1017 |
≥ 1017 3#90 [1548] | |
1042 |
40 |
156 |
39 |
10 |
9 |
≥ 1 |
VI.16.87 |
|
1043 |
66 |
234 |
39 |
11 |
6 |
≥ 21584 |
? 3#92 [1224] | |
1044 |
144 |
468 |
39 |
12 |
3 |
≥ 1 |
? 3#93* [528] |
IV.2.67 |
1045 |
40 |
130 |
39 |
12 |
11 |
≥ 1 |
- D#1169* [1042] |
VI.16.88 |
1046 |
469 |
1407 |
39 |
13 |
1 |
? |
- | |
1047 |
235 |
705 |
39 |
13 |
2 |
? |
- | |
1048 |
157 |
471 |
39 |
13 |
3 |
≥ 1 |
- 3#94* [528] |
IV.2.67 |
1049 |
118 |
354 |
39 |
13 |
4 |
? |
- | |
1050 |
79 |
237 |
39 |
13 |
6 |
≥ 10125 |
- 3#95 [1548] | |
1051 |
53 |
159 |
39 |
13 |
9 |
≥ 1 |
- 3#96* [1] | |
1052 |
40 |
120 |
39 |
13 |
12 |
≥ 1033 |
- 3#97,D#1170 [1548] | |
1053 |
37 |
111 |
39 |
13 |
13 |
≥ 1 |
- [1042] |
II.7.46 |
1054 |
27 |
81 |
39 |
13 |
18 |
≥ 208311 |
- 3#98 | |
1055 |
40 |
104 |
39 |
15 |
14 |
≥ 1 |
- D#1171* [1042] | |
1056 |
222 |
481 |
39 |
18 |
3 |
? |
- | |
1057 |
703 |
1443 |
39 |
19 |
1 |
? |
? | |
1058 |
40 |
78 |
39 |
20 |
19 |
≥ 1 |
≥ 1 R#1074,HD [2110] | |
1059 |
196 |
364 |
39 |
21 |
4 |
? |
- | |
1060 |
976 |
1464 |
39 |
26 |
1 |
? |
- | |
1061 |
326 |
489 |
39 |
26 |
3 |
? |
- | |
1062 |
196 |
294 |
39 |
26 |
5 |
? |
- | |
1063 |
76 |
114 |
39 |
26 |
13 |
? |
- R#1073* | |
1064 |
66 |
99 |
39 |
26 |
15 |
? |
- | |
1065 |
209 |
247 |
39 |
33 |
6 |
? |
- R#1072* | |
1066 |
456 |
494 |
39 |
36 |
3 |
? |
- R#1071* | |
1067 |
703 |
741 |
39 |
37 |
2 |
0 |
0 R#1070*,×2 | |
1068 |
1444 |
1482 |
39 |
38 |
1 |
0 |
0 R#1069*,×2,AG(2,38) | |
1069 |
1483 |
1483 |
39 |
39 |
1 |
0 |
- ×1, PG(2,38) | |
1070 |
742 |
742 |
39 |
39 |
2 |
0 |
-×1 | |
1071 |
495 |
495 |
39 |
39 |
3 |
? |
- | |
1072 |
248 |
248 |
39 |
39 |
6 |
0 |
-×1 | |
1073 |
115 |
115 |
39 |
39 |
13 |
0 |
-×1 | |
1074 |
79 |
79 |
39 |
39 |
19 |
≥ 2091 |
- [1087] |
VI.18.73 |
1075 |
81 |
1080 |
40 |
3 |
1 |
≥ 1048 |
VI.16.12 |
|
1076 |
21 |
280 |
40 |
3 |
4 |
≥ 1024 |
≥ 1021 4#42 [1548] | |
1077 |
9 |
120 |
40 |
3 |
10 |
≥ 108 |
≥ 105 10#2 [1548] | |
1078 |
6 |
80 |
40 |
3 |
16 |
76 |
1 8#4,4#43 [1548] | |
1079 |
121 |
1210 |
40 |
4 |
1 |
≥ 1013 |
VI.16.61 |
|
1080 |
61 |
610 |
40 |
4 |
2 |
≥ 104 |
- 2#237 | |
1081 |
41 |
410 |
40 |
4 |
3 |
≥ 1 |
- D#1192* |
II.7.46 |
1082 |
31 |
310 |
40 |
4 |
4 |
≥ 1 |
- 2#238 | |
1083 |
25 |
250 |
40 |
4 |
5 |
≥ 1023 |
- 5#22 [1548] | |
1084 |
21 |
210 |
40 |
4 |
6 |
≥ 1 |
- 2#239 | |
1085 |
16 |
160 |
40 |
4 |
8 |
≥ 1015 |
≥ 1015 8#5 [1548] | |
1086 |
13 |
130 |
40 |
4 |
10 |
≥ 1014 |
- 10#3 [1548] | |
1087 |
11 |
110 |
40 |
4 |
12 |
≥ 1 |
- 2#242 | |
1088 |
9 |
90 |
40 |
4 |
15 |
≥ 106 |
- 5#24 [1548] | |
1089 |
161 |
1288 |
40 |
5 |
1 |
≥ 1 |
- [1042] |
VI.16.16 |
1090 |
81 |
648 |
40 |
5 |
2 |
≥ 1 |
- 2#243 | |
1091 |
41 |
328 |
40 |
5 |
4 |
≥ 1046 |
- 4#45,D#1193* | |
1092 |
33 |
264 |
40 |
5 |
5 |
≥ 1 |
- [1042] |
VI.16.17 |
1093 |
21 |
168 |
40 |
5 |
8 |
≥ 1024 |
- 8#6 [1548] | |
1094 |
17 |
136 |
40 |
5 |
10 |
≥ 1 |
- 2#246 | |
1095 |
11 |
88 |
40 |
5 |
16 |
≥ 107 |
- 8#7 [1548] | |
1096 |
201 |
1340 |
40 |
6 |
1 |
≥ 1 |
-[18] |
II.3.32 |
1097 |
51 |
340 |
40 |
6 |
4 |
≥ 1 |
- 4#48*,2#248 | |
1098 |
21 |
140 |
40 |
6 |
10 |
≥ 1 |
- 5#25*,2#249 | |
1099 |
49 |
280 |
40 |
7 |
5 |
≥ 1053 |
≥ 1053 5#26 [1548] | |
1100 |
21 |
120 |
40 |
7 |
12 |
≥ 1018 |
≥ 1 4#49,2#250 | |
1101 |
281 |
1405 |
40 |
8 |
1 |
? |
- | |
1102 |
141 |
705 |
40 |
8 |
2 |
≥ 1 |
- [19] | |
1103 |
71 |
355 |
40 |
8 |
4 |
≥ 1 |
- [2144] |
VI.16.30 |
1104 |
57 |
285 |
40 |
8 |
5 |
≥ 1063 |
- 5#27 [1548] | |
1105 |
41 |
205 |
40 |
8 |
7 |
≥ 1 |
- D#1194* [1042] |
II.7.46 |
1106 |
36 |
180 |
40 |
8 |
8 |
≥ 3 |
- 4#50*,2#251 | |
1107 |
29 |
145 |
40 |
8 |
10 |
≥ 1 |
- 5#28*,#157+#379 | |
1108 |
21 |
105 |
40 |
8 |
14 |
≥ 1 |
- [1042] |
VI.16.30 |
1109 |
81 |
360 |
40 |
9 |
4 |
≥ 10108 |
≥ 10108 4#51 [1548] | |
1110 |
361 |
1444 |
40 |
10 |
1 |
? |
- | |
1111 |
181 |
724 |
40 |
10 |
2 |
≥ 2 |
VI.16.30 |
|
1112 |
121 |
484 |
40 |
10 |
3 |
≥ 1 |
- [1] |
VI.16.31 |
1113 |
91 |
364 |
40 |
10 |
4 |
≥ 10125 |
- 4#52 [1548] | |
1114 |
73 |
292 |
40 |
10 |
5 |
≥ 1 |
- [2144] |
VI.16.30 |
1115 |
61 |
244 |
40 |
10 |
6 |
≥ 10 |
- 2#255* [272] | |
1116 |
46 |
184 |
40 |
10 |
8 |
≥ 1 |
- 4#53*,2#256* [1] | |
1117 |
41 |
164 |
40 |
10 |
9 |
≥ 1 |
- D#1195* [1042] |
II.7.46 |
1118 |
37 |
148 |
40 |
10 |
10 |
≥ 1 |
- 2#257 | |
1119 |
31 |
124 |
40 |
10 |
12 |
≥ 152 |
- 4#54 | |
1120 |
25 |
100 |
40 |
10 |
15 |
≥ 1 |
- #160+#384 | |
1121 |
21 |
84 |
40 |
10 |
18 |
≥ 5 |
- 2#259 | |
1122 |
441 |
1470 |
40 |
12 |
1 |
? |
- | |
1123 |
111 |
370 |
40 |
12 |
4 |
? |
- 2#260* | |
1124 |
45 |
150 |
40 |
12 |
10 |
≥ 1 |
- 2#261*,#84+#543 | |
1125 |
481 |
1480 |
40 |
13 |
1 |
? |
? | |
1126 |
105 |
300 |
40 |
14 |
5 |
? |
- | |
1127 |
561 |
1496 |
40 |
15 |
1 |
? |
- | |
1128 |
141 |
376 |
40 |
15 |
4 |
? |
- 2#262* | |
1129 |
81 |
216 |
40 |
15 |
7 |
≥ 1 |
- [2144] | |
1130 |
57 |
152 |
40 |
15 |
10 |
? |
- 2#263* | |
1131 |
36 |
96 |
40 |
15 |
16 |
≥ 1 |
- 2#264 | |
1132 |
76 |
190 |
40 |
16 |
8 |
≥ 1 |
- 2#265 | |
1133 |
171 |
380 |
40 |
18 |
4 |
? |
- 2#266* | |
1134 |
361 |
760 |
40 |
19 |
2 |
≥ 7417 |
≥ 7417 2#267 [1225] | |
1135 |
761 |
1522 |
40 |
20 |
1 |
? |
- | |
1136 |
381 |
762 |
40 |
20 |
2 |
≥ 3 · 1016 |
- 2#268 [1239] | |
1137 |
191 |
382 |
40 |
20 |
4 |
? |
- 2#269* | |
1138 |
153 |
306 |
40 |
20 |
5 |
? |
- | |
1139 |
96 |
192 |
40 |
20 |
8 |
≥ 3 |
- 2#270 | |
1140 |
77 |
154 |
40 |
20 |
10 |
? |
- 2#271* | |
1141 |
41 |
82 |
40 |
20 |
19 |
≥ 1 |
- D#1196 [2110] | |
1142 |
121 |
220 |
40 |
22 |
7 |
? |
- | |
1143 |
921 |
1535 |
40 |
24 |
1 |
? |
- | |
1144 |
231 |
385 |
40 |
24 |
4 |
? |
- | |
1145 |
93 |
155 |
40 |
24 |
10 |
? |
- | |
1146 |
65 |
104 |
40 |
25 |
15 |
? |
- R#1171* | |
1147 |
1001 |
1540 |
40 |
26 |
1 |
? |
- | |
1148 |
81 |
120 |
40 |
27 |
13 |
≥ 1013 |
≥ 1013 R#1170,AG3 (4, 3) [1223] | |
1149 |
217 |
310 |
40 |
28 |
5 |
? |
- | |
1150 |
91 |
130 |
40 |
28 |
12 |
? |
- R#1169* | |
1151 |
1161 |
1548 |
40 |
30 |
1 |
? |
- | |
1152 |
291 |
388 |
40 |
30 |
4 |
? |
- | |
1153 |
117 |
156 |
40 |
30 |
10 |
? |
- R#1168* | |
1154 |
156 |
195 |
40 |
32 |
8 |
? |
- R#1167* | |
1155 |
221 |
260 |
40 |
34 |
6 |
? |
- R#1166* | |
1156 |
273 |
312 |
40 |
35 |
5 |
? |
- R#1165* | |
1157 |
351 |
390 |
40 |
36 |
4 |
? |
- R#1164* | |
1158 |
481 |
520 |
40 |
37 |
3 |
? |
0 R#1163*,×3 | |
1159 |
741 |
780 |
40 |
38 |
2 |
0 |
- R#1162*,×2 | |
1160 |
1521 |
1560 |
40 |
39 |
1 |
? |
? R#1161*,AG(2,39) | |
1161 |
1561 |
1561 |
40 |
40 |
1 |
? |
- PG(2,39) | |
1162 |
781 |
781 |
40 |
40 |
2 |
0 |
-×1 | |
1163 |
521 |
521 |
40 |
40 |
3 |
? |
- | |
1164 |
391 |
391 |
40 |
40 |
4 |
? |
- | |
1165 |
313 |
313 |
40 |
40 |
5 |
0 |
-×1 | |
1166 |
261 |
261 |
40 |
40 |
6 |
0 |
-×1 | |
1167 |
196 |
196 |
40 |
40 |
8 |
0 |
-×1 | |
1168 |
157 |
157 |
40 |
40 |
10 |
0 |
-×1 | |
1169 |
131 |
131 |
40 |
40 |
12 |
? |
- | |
1170 |
121 |
121 |
40 |
40 |
13 |
≥ 1029 |
-PG3(4,3) [1223] |
VI.18.73 |
1171 |
105 |
105 |
40 |
40 |
15 |
≥ 4 |
- [1183] | |
1172 |
42 |
574 |
41 |
3 |
2 |
≥ 6 · 1024 |
VI.16.81 |
|
1173 |
124 |
1271 |
41 |
4 |
1 |
≥ 2 |
III.2.9 |
|
1174 |
165 |
1353 |
41 |
5 |
1 |
≥ 15 |
III.2.9 |
|
1175 |
42 |
287 |
41 |
6 |
5 |
≥ 2 |
VI.16.86 |
|
1176 |
42 |
246 |
41 |
7 |
6 |
≥ 1 |
VI.16.87 |
|
1177 |
288 |
1476 |
41 |
8 |
1 |
≥ 1 |
≥ 1 [958] |
II.7.50 |
1178 |
370 |
1517 |
41 |
10 |
1 |
? |
? | |
1179 |
247 |
779 |
41 |
13 |
2 |
? |
? | |
1180 |
42 |
123 |
41 |
14 |
13 |
≥ 1 |
?D[1] | |
1181 |
247 |
533 |
41 |
19 |
3 |
? |
? | |
1182 |
780 |
1599 |
41 |
20 |
1 |
? |
? | |
1183 |
42 |
82 |
41 |
21 |
20 |
≥ 1 |
0 R#1196,×3 [2110] | |
1184 |
124 |
164 |
41 |
31 |
10 |
? |
0 R#1195*,×3 | |
1185 |
165 |
205 |
41 |
33 |
8 |
? |
0 R#1194*,×3 | |
1186 |
288 |
328 |
41 |
36 |
5 |
? |
0 R#1193*,×3 | |
1187 |
370 |
410 |
41 |
37 |
4 |
? |
0 R#1192*,×3 | |
1188 |
780 |
820 |
41 |
39 |
2 |
? |
0 R#1191*,×3 | |
1189 |
1600 |
1640 |
41 |
40 |
1 |
? |
? R#1190*,AG(2,40) | |
1190 |
1641 |
1641 |
41 |
41 |
1 |
? |
- PG(2,40) | |
1191 |
821 |
821 |
41 |
41 |
2 |
? |
- | |
1192 |
411 |
411 |
41 |
41 |
4 |
? |
- | |
1193 |
329 |
329 |
41 |
41 |
5 |
? |
- | |
1194 |
206 |
206 |
41 |
41 |
8 |
0 |
-×1 | |
1195 |
165 |
165 |
41 |
41 |
10 |
? |
- | |
1196 |
83 |
83 |
41 |
41 |
20 |
≥ 1 |
- [2110] |
VI.18.73 |
See Also
BIBDs with block size 3. |
|
Existence results on designs with “small” block size. |
|
Resolvable designs. |
|
Symmetric designs. |
|
Steiner systems. |
|
PBD constructions make BIBDs. |
|
[1016] |
A general introduction to combinatorics and in particular to design theory. |
[1271] |
Contains exhaustive catalogues of BIBDs and their resolutions in electronic form. |
References Cited: [1, 2, 4, 18, 19, 21, 22, 33, 41, 43, 46, 114, 124, 127, 144, 180, 246, 248, 272, 323, 324, 331, 332, 352, 375, 380, 382, 392, 393, 396, 404, 416, 514, 518, 528, 534, 537, 562, 587, 607, 619, 620, 623, 660, 679, 688, 692, 693, 694, 696, 697, 710, 734, 790, 827, 848, 856, 898, 957, 958, 959, 976, 978, 1005, 1013, 1016, 1034, 1040, 1042, 1044, 1047, 1053, 1087, 1138, 1151, 1172, 1174, 1183, 1184, 1185, 1188, 1207, 1208, 1223, 1224, 1225, 1228, 1236, 1239, 1241, 1243, 1251, 1262, 1263, 1264, 1265, 1267, 1268, 1271, 1319, 1321, 1339, 1346, 1347, 1349, 1372, 1373, 1374, 1375, 1377, 1378, 1379, 1380, 1381, 1398, 1463, 1496, 1497, 1533, 1537, 1543, 1544, 1545, 1546, 1547, 1548, 1549, 1551, 1556, 1566, 1578, 1588, 1605, 1606, 1607, 1609, 1610, 1612, 1628, 1629, 1632, 1633, 1665, 1704, 1705, 1707, 1714, 1720, 1729, 1743, 1773, 1832, 1833, 1839, 1877, 1900, 1903, 1912, 1938, 1940, 1941, 1943, 1944, 1945, 1946, 1976, 1999, 2031, 2039, 2043, 2045, 2058, 2059, 2060, 2062, 2063, 2064, 2065, 2066, 2067, 2071, 2090, 2110, 2130, 2144, 2148]